Suppr超能文献

偏态数据的Meta分析:合并对数转换或原始尺度上报告的结果。

Meta-analysis of skewed data: combining results reported on log-transformed or raw scales.

作者信息

Higgins Julian P T, White Ian R, Anzures-Cabrera Judith

机构信息

MRC Biostatistics Unit, Institute of Public Health, Cambridge, UK.

出版信息

Stat Med. 2008 Dec 20;27(29):6072-92. doi: 10.1002/sim.3427.

Abstract

When literature-based meta-analyses involve outcomes with skewed distributions, the best available data can sometimes be a mixture of results presented on the raw scale and results presented on the logarithmic scale. We review and develop methods for transforming between these results for two-group studies, such as clinical trials and prospective or cross-sectional epidemiological studies. These allow meta-analyses to be conducted using all studies and on a common scale. The methods can also be used to produce a meta-analysis of ratios of geometric means when skewed data are reported on the raw scale for every study. We compare three methods, two of which have alternative standard error formulae, in an application and in a series of simulation studies. We conclude that an approach based on a log-normal assumption for the raw data is reasonably robust to different true distributions; and we provide new standard error approximations for this method. An assumption can be made that the standard deviations in the two groups are equal. This increases precision of the estimates, but if incorrect can lead to very misleading results.

摘要

当基于文献的荟萃分析涉及偏态分布的结果时,有时可获得的最佳数据是原始尺度上呈现的结果与对数尺度上呈现的结果的混合。我们回顾并开发了用于两组研究(如临床试验以及前瞻性或横断面流行病学研究)中这些结果之间转换的方法。这些方法允许使用所有研究并在共同尺度上进行荟萃分析。当每个研究均以原始尺度报告偏态数据时,这些方法还可用于对几何均数之比进行荟萃分析。我们在一项应用研究和一系列模拟研究中比较了三种方法,其中两种方法具有替代的标准误公式。我们得出结论,基于原始数据的对数正态假设的方法对不同的真实分布具有合理的稳健性;并且我们为该方法提供了新的标准误近似值。可以假设两组的标准差相等。这会提高估计的精度,但如果假设错误可能会导致极具误导性的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4078/2978323/bf1af3a25ab0/sim0027-6072-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验