Chen Pei-Fu, Dexter Franklin
Department of Anesthesiology, Far Eastern Memorial Hospital, New Taipei City, Taiwan.
Department of Electrical Engineering, Yuan Ze University, Taoyuan, Taiwan.
Can J Anaesth. 2025 Apr;72(4):633-643. doi: 10.1007/s12630-025-02922-6. Epub 2025 Apr 11.
Clinical trials often report medians and quartiles due to skewed data distributions. We sought to evaluate the methods currently used in meta-analyses in anesthesiology to estimate means and standard deviations (SDs) from medians and quartiles.
We simulated sample sizes (n = 15, 27, 51) and coefficients of variation (CV = 0.15, 0.3, 0.5), representative scenarios in anesthesiology studies, generating data that have a log-normal distribution with zero log-scale means. We calculated generalized confidence intervals for the ratios of means and ratios of SDs using means and SDs estimated from three quartiles in time scale, using Luo et al.'s and Wan et al.'s methods, McGrath et al.'s quantile estimation and Box-Cox transformation, and Cai et al.'s maximum likelihood estimation method.
The method by Luo et al. and Wan et al. produced 95% confidence intervals for the ratio of means with coverage ranging from 92.4% to 93.6%, and for SDs from 79.2 to 89.6. McGrath et al.'s quantile estimation method yielded coverage for mean ratios between 88.5% and 91.5% and SDs between 78.0 and 82.7. McGrath et al.'s Box-Cox transformation method showed coverage for mean ratios from 86.6% to 94.4% and SDs from 67.1 to 83.1. The maximum likelihood estimation method by Cai et al. for nonnormal distributions showed coverage for mean ratios from 78.9% to 86.4% and SDs from 67.6 to 78.0.
All evaluated methods of estimating means and standard deviations from quartiles of log-normal distributed data result in confidence interval coverages below the expected 95%. Because these methods are widely used in meta-analyses of anesthesiology data, P values reported as < 0.05 cannot be trusted. Anesthesiology journals and investigators should revise reporting requirements for continuous skewed variables. We advise reporting the quartiles, mean, and SD, or the quartiles and including the raw data for the relevant variables as supplemental content. This holistic approach could improve the reliability of statistical inferences in meta-analyses of anesthesiology research, particularly when skewed distributions are involved.
由于数据分布偏态,临床试验常报告中位数和四分位数。我们试图评估麻醉学荟萃分析中目前用于从中位数和四分位数估计均值和标准差(SD)的方法。
我们模拟了样本量(n = 15、27、51)和变异系数(CV = 0.15、0.3、0.5),这是麻醉学研究中的代表性场景,生成对数正态分布且对数尺度均值为零的数据。我们使用从时间尺度上的三个四分位数估计的均值和标准差,采用罗等人和万等人的方法、麦格拉思等人的分位数估计和Box - Cox变换以及蔡等人的最大似然估计方法,计算均值比和标准差比的广义置信区间。
罗等人和万等人的方法产生的均值比的95%置信区间的覆盖率在92.4%至93.6%之间,标准差的覆盖率在79.2%至89.6%之间。麦格拉思等人的分位数估计方法产生的均值比覆盖率在88.5%至91.5%之间,标准差覆盖率在78.0%至82.7%之间。麦格拉思等人的Box - Cox变换方法显示均值比覆盖率在86.6%至94.4%之间,标准差覆盖率在67.1%至83.1%之间。蔡等人针对非正态分布的最大似然估计方法显示均值比覆盖率在78.9%至86.4%之间,标准差覆盖率在67.6%至78.0%之间。
所有评估的从对数正态分布数据的四分位数估计均值和标准差的方法,其置信区间覆盖率均低于预期的95%。由于这些方法在麻醉学数据的荟萃分析中广泛使用,报告的P值<0.05不可信。麻醉学杂志和研究者应修订连续偏态变量的报告要求。我们建议报告四分位数、均值和标准差,或者报告四分位数并将相关变量的原始数据作为补充内容纳入。这种整体方法可以提高麻醉学研究荟萃分析中统计推断的可靠性,特别是在涉及偏态分布时。