Anisimov Victor M, Vorobyov Igor V, Roux Benoît, Mackerell Alexander D
Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD, 21201.
J Chem Theory Comput. 2007;3(6):1927-1946. doi: 10.1021/ct700100a.
A polarizable empirical force field based on the classical Drude oscillator has been developed for the aliphatic alcohol series. The model is optimized with emphasis on condensed-phase properties and is validated against a variety of experimental data. Transferability of the developed parameters is emphasized by the use of a single electrostatic model for the hydroxyl group throughout the alcohol series. Aliphatic moiety parameters were transferred from the polarizable alkane parameter set, with only the Lennard-Jones parameters on the carbon in methanol optimized. The developed model yields good agreement with pure solvent properties with the exception of the heats of vaporization of 1-propanol and 1-butanol, which are underestimated by approximately 6%; special LJ parameters for the oxygen in these two molecules that correct for this limitation are presented. Accurate treatment of the free energies of aqueous solvation required the use of atom-type specific O(alcohol)-O(water) LJ interaction terms, with specific terms used for the primary and secondary alcohols. With respect to gas phase properties the polarizable model overestimates experimental dipole moments and quantum mechanical interaction energies with water by approximately 10 and 8 %, respectively, a significant improvement over 44 and 46 % overestimations of the corresponding properties in the CHARMM22 fixed-charge additive model. Comparison of structural properties of the polarizable and additive models for the pure solvents and in aqueous solution shows significant differences indicating atomic details of intermolecular interactions to be sensitive to the applied force field. The polarizable model predicts pure solvent and aqueous phase dipole moment distributions for ethanol centered at 2.4 and 2.7 D, respectively, a significant increase over the gas phase value of 1.8 D, whereas in a solvent of lower polarity, benzene, a value of 1.9 is obtained. The ability of the polarizable model to yield changes in dipole moment as well as the reproduction of a range of condensed phase properties indicates its utility in the study of the properties of alcohols in a variety of condensed phase environments as well as representing an important step in the development of a comprehensive force field for biological molecules.
基于经典德鲁德振子的可极化经验力场已针对脂肪醇系列开发出来。该模型着重于凝聚相性质进行了优化,并通过多种实验数据进行了验证。通过在整个醇系列中对羟基使用单一静电模型,强调了所开发参数的可转移性。脂肪族部分的参数是从可极化烷烃参数集转移而来的,仅对甲醇中碳的 Lennard-Jones 参数进行了优化。所开发的模型与纯溶剂性质吻合良好,但 1-丙醇和 1-丁醇的汽化热除外,这两种醇的汽化热被低估了约 6%;本文给出了针对这两个分子中氧的特殊 Lennard-Jones 参数以校正此限制。准确处理水合自由能需要使用原子类型特定的 O(醇)-O(水) Lennard-Jones 相互作用项,其中主要醇类和仲醇类使用特定项。关于气相性质,可极化模型分别高估了实验偶极矩和与水的量子力学相互作用能约 10%和 8%,相较于 CHARMM22 固定电荷加和模型中相应性质分别高估 44%和 46%有了显著改进。对纯溶剂及其水溶液的可极化模型和加和模型的结构性质比较显示出显著差异,表明分子间相互作用的原子细节对所应用的力场敏感。可极化模型预测乙醇在纯溶剂和水相中的偶极矩分布分别以 2.4 D 和 2.7 D 为中心,相较于气相值 1.8 D 有显著增加,而在极性较低的溶剂苯中,得到的值为 1.9 D。可极化模型产生偶极矩变化的能力以及对一系列凝聚相性质的再现表明其在研究各种凝聚相环境中醇的性质方面的效用,同时也代表了生物分子综合力场开发中的重要一步。