Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, 20 Penn St., Baltimore, Maryland 21201, USA.
Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, 5635 Fishers Lane, Rockville, Maryland 20852, USA.
J Chem Phys. 2017 Oct 28;147(16):161702. doi: 10.1063/1.4984113.
The induced dipole and the classical Drude oscillator represent two major approaches for the explicit inclusion of electronic polarizability into force field-based molecular modeling and simulations. In this work, we explore the equivalency of these two models by comparing condensed phase properties computed using the Drude force field and a multipole and induced dipole (MPID) model. Presented is an approach to map the electrostatic model optimized in the context of the Drude force field onto the MPID model. Condensed phase simulations on water and 15 small model compounds show that without any reparametrization, the MPID model yields properties similar to the Drude force field with both models yielding satisfactory reproduction of a range of experimental values and quantum mechanical data. Our results illustrate that the Drude oscillator model and the point induced dipole model are different representations of essentially the same physical model. However, results indicate the presence of small differences between the use of atomic multipoles and off-center charge sites. Additionally, results on the use of dispersion particle mesh Ewald further support its utility for treating long-range Lennard Jones dispersion contributions in the context of polarizable force fields. The main motivation in demonstrating the transferability of parameters between the Drude and MPID models is that the more than 15 years of development of the Drude polarizable force field can now be used with MPID formalism without the need for dual-thermostat integrators nor self-consistent iterations. This opens up a wide range of new methodological opportunities for polarizable models.
诱导偶极子和经典的德拜振荡器代表了将电子极化率明确纳入基于力场的分子建模和模拟的两种主要方法。在这项工作中,我们通过比较使用德拜力场和多极和诱导偶极子(MPID)模型计算的凝聚相性质来探索这两种模型的等效性。本文提出了一种方法,可将在德拜力场背景下优化的静电模型映射到 MPID 模型上。对水和 15 种小模型化合物的凝聚相模拟表明,无需任何重新参数化,MPID 模型即可产生与德拜力场相似的性质,两种模型都能令人满意地再现一系列实验值和量子力学数据。我们的结果表明,德拜振荡器模型和点诱导偶极子模型是本质上相同物理模型的不同表示。然而,结果表明,在使用原子多极子和非中心电荷位点方面存在微小差异。此外,关于使用色散粒子网格 Ewald 的结果进一步支持了它在处理极化力场中长程 Lennard-Jones 色散贡献方面的效用。在德拜和 MPID 模型之间演示参数可转移性的主要动机是,德拜极化力场已经有超过 15 年的发展历史,现在可以在不需要双恒温器积分器或自洽迭代的情况下,使用 MPID 形式来使用。这为极化模型开辟了广泛的新方法学机会。