Suppr超能文献

X射线冠状动脉造影图像中用于图像分割的活动轮廓模型比较。

Comparison of active contour models for image segmentation in X-ray coronary angiogram images.

作者信息

Nirmala Devi S, Kumaravel N

机构信息

Center for Medical Electronics, Department of Electronics and Communication Engineering, College of Engineering, Guindy, Anna University, Chennai, India.

出版信息

J Med Eng Technol. 2008 Sep-Oct;32(5):408-18. doi: 10.1080/09687630801889440.

Abstract

Snakes, or active contours, are used extensively in computer vision and image processing applications, particularly to locate object boundaries. However, most present snake models cannot provide better capture range and evolution stop mechanism. This project presents a new external force for active contours, largely solving both problems. An extension of the gradient vector flow snake (GVF snake) method is presented. First, the adaptive balloon force has been developed to increase the GVF snake's capture range and convergence speed. Then, a dynamic GVF force is introduced to provide an efficient evolution-stop mechanism. In this way, we prevent the snake from breaking through the correct surface and locking to other salient feature points. The active contour models have been applied on X-ray coronary angiogram images. The segmentation results demonstrate the potential of improved GVF method is comparison with all previous active contour methods. Texture parameters have been calculated and results are compared with all active contour models.

摘要

蛇形模型,即活动轮廓模型,在计算机视觉和图像处理应用中被广泛使用,尤其是用于定位物体边界。然而,目前大多数蛇形模型无法提供更好的捕获范围和演化停止机制。本项目提出了一种新的活动轮廓外力,很大程度上解决了这两个问题。提出了梯度向量流蛇形(GVF蛇形)方法的一种扩展。首先,开发了自适应气球力以增加GVF蛇形的捕获范围和收敛速度。然后,引入动态GVF力以提供一种有效的演化停止机制。通过这种方式,我们防止蛇形模型突破正确的表面并锁定到其他显著特征点。活动轮廓模型已应用于X射线冠状动脉造影图像。分割结果表明,与所有先前的活动轮廓方法相比,改进的GVF方法具有潜力。已计算纹理参数,并将结果与所有活动轮廓模型进行比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验