Suppr超能文献

采用基于蛇变量模型的方法对心脏超声医学图像进行分割和定量计算。

Adoption of Snake Variable Model-Based Method in Segmentation and Quantitative Calculation of Cardiac Ultrasound Medical Images.

机构信息

Department of Ultrasound, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China.

出版信息

J Healthc Eng. 2021 Jul 26;2021:2425482. doi: 10.1155/2021/2425482. eCollection 2021.

Abstract

This paper intends to explore the effect of the enhanced snake variable model in the segmentation of cardiac ultrasound images and its adoption in quantitative measurement of cardiac cavity. First, the basic principles of the traditional snake model and the gradient vector flow (GVF) snake model are explained. Then, an ellipsoid model is constructed to obtain the initial contour of the heart based on the three-dimensional volume of cardiac ultrasound image, and a discretized triangular mesh model is generated. Finally, the vortical gradient vector flow (VGVF) external force field is introduced and combined with the greedy algorithm to process the deformation of the initial ellipsoid contour of the heart. The segmentation effect is quantitatively evaluated regarding the area overlap rate (AOR) and the mean contour distance (MCD). The results show that the VGVF snake model can segment the deep recessed area of the "U-shaped map" in contrast to the traditional snake model and the GVF snake model. After being applied to ultrasonic image segmentation, the VGVF snake model obtains the segmentation result that is close to the doctor's manual segmentation result, and the average AOR and MCD are 97.4% and 3.2, respectively. The quantitative evaluation of the cardiac cavity is carried out based on the segmentation results, and the measurement of the volume change of the left ventricle within a cardiac cycle is realized. To sum up, VGVF snake model is superior to the traditional snake and GVF snake models in terms of ultrasonic image segmentation, which realizes the three-dimensional segmentation and quantitative calculation of the cardiac cavity.

摘要

本文旨在探讨增强型蛇变模型在心脏超声图像分割中的作用及其在心脏腔定量测量中的应用。首先,解释了传统蛇模型和梯度矢量流(GVF)蛇模型的基本原理。然后,构建了一个椭圆模型,根据心脏超声图像的三维体积获得心脏的初始轮廓,并生成离散的三角网格模型。最后,引入涡度梯度矢量流(VGVF)外力场,并结合贪婪算法处理心脏初始椭圆轮廓的变形。采用面积重叠率(AOR)和平均轮廓距离(MCD)对分割效果进行定量评估。结果表明,与传统蛇模型和 GVF 蛇模型相比,VGVF 蛇模型可以分割“U 形图”的深凹区域。将 VGVF 蛇模型应用于超声图像分割后,可得到与医生手动分割结果相近的分割结果,平均 AOR 和 MCD 分别为 97.4%和 3.2。基于分割结果进行心脏腔的定量评估,实现了心动周期内左心室容积变化的测量。总之,VGVF 蛇模型在超声图像分割方面优于传统蛇模型和 GVF 蛇模型,实现了心脏腔的三维分割和定量计算。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00b5/8331276/fba4ba10404a/JHE2021-2425482.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验