Kosourov Sergey N, Seibert Michael
Chemical and Biosciences Center, National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401-3933, USA.
Biotechnol Bioeng. 2009 Jan 1;102(1):50-8. doi: 10.1002/bit.22050.
A new technique for immobilizing H2-photoproducing green algae within a thin (<400 microm) alginate film has been developed. Alginate films with entrapped sulfur/phosphorus-deprived Chlamydomonas reinhardtii, strain cc124, cells demonstrate (a) higher cell density (up to 2,000 microg Chl mL(-1) of matrix), (b) kinetics of H2 photoproduction similar to sulfur-deprived suspension cultures, (c) higher specific rates (up to 12.5 micromol mg(-1) Chl h(-1)) of H2 evolution, (d) light conversion efficiencies to H2 of over 1% and (e) unexpectedly high resistance of the H2-photoproducing system to inactivation by atmospheric O2. The algal cells, entrapped in alginate and then placed in vials containing 21% O2 in the headspace, evolved up to 67% of the H2 gas produced under anaerobic conditions. The results indicate that the lower susceptibility of the immobilized algal H2-producing system to inactivation by O2 depends on two factors: (a) the presence of acetate in the medium, which supports higher rates of respiration and (b) the capability of the alginate polymer itself to effectively separate the entrapped cells from O2 in the liquid and headspace and restrict O2 diffusion into the matrix. The strategy presented for immobilizing algal cells within thin polymeric matrices shows the potential for scale-up and possible future applications.
一种将产氢绿藻固定在薄(<400微米)藻酸盐膜内的新技术已被开发出来。含有截留的缺硫/磷莱茵衣藻cc124细胞的藻酸盐膜表现出:(a)更高的细胞密度(基质中高达2000微克叶绿素/毫升),(b)类似于缺硫悬浮培养物的产氢动力学,(c)更高的产氢比速率(高达12.5微摩尔/毫克叶绿素·小时),(d)光转化为氢的效率超过1%,以及(e)产氢系统对大气中氧气失活的意外高抗性。包裹在藻酸盐中的藻类细胞,然后置于顶部空间含21%氧气的小瓶中,产生的氢气量高达厌氧条件下产生氢气量的67%。结果表明,固定化藻类产氢系统对氧气失活的较低敏感性取决于两个因素:(a)培养基中乙酸盐的存在,它支持更高的呼吸速率;(b)藻酸盐聚合物本身能够有效地将截留的细胞与液体和顶部空间中的氧气分离,并限制氧气扩散到基质中。将藻类细胞固定在薄聚合物基质中的策略显示了扩大规模和未来可能应用的潜力。