Suppr超能文献

光生物制氢及提高蓝藻产氢效率的策略。

Photobiohydrogen Production and Strategies for H Yield Improvements in Cyanobacteria.

机构信息

Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani, Thailand.

Faculty of Veterinary Technology, Program of Animal Health Technology, Kasetsart University, Bangkok, Thailand.

出版信息

Adv Biochem Eng Biotechnol. 2023;183:253-279. doi: 10.1007/10_2023_216.

Abstract

Hydrogen gas (H) is one of the potential future sustainable and clean energy carriers that may substitute the use of fossil resources including fuels since it has a high energy content (heating value of 141.65 MJ/kg) when compared to traditional hydrocarbon fuels [1]. Water is a primary product of combustion being a most significant advantage of H being environmentally friendly with the capacity to reduce global greenhouse gas emissions. H is used in various applications. It generates electricity in fuel cells, including applications in transportation, and can be applied as fuel in rocket engines [2]. Moreover, H is an important gas and raw material in many industrial applications. However, the high cost of the H production processes requiring the use of other energy sources is a significant disadvantage. At present, H can be prepared in many conventional ways, such as steam reforming, electrolysis, and biohydrogen production processes. Steam reforming uses high-temperature steam to produce hydrogen gas from fossil resources including natural gas. Electrolysis is an electrolytic process to decompose water molecules into O and H. However, both these two methods are energy-intensive and producing hydrogen from natural gas, which is mostly methane (CH) and in steam reforming generates CO and pollutants as by-products. On the other hand, biological hydrogen production is more environmentally sustainable and less energy intensive than thermochemical and electrochemical processes [3], but most concepts are not yet developed to production scale.

摘要

氢气(H)是一种有潜力的未来可持续清洁能源载体,它可以替代包括燃料在内的传统碳氢化合物燃料的使用,因为与传统碳氢化合物燃料相比,它具有较高的能量含量(热值为 141.65 MJ/kg)[1]。水是燃烧的主要产物,这是 H 作为环保燃料的最大优势之一,它具有减少全球温室气体排放的能力。H 在各种应用中都有使用。它在燃料电池中产生电能,包括在交通运输中的应用,并且可以作为火箭发动机的燃料[2]。此外,H 是许多工业应用中的重要气体和原料。然而,需要使用其他能源的 H 生产工艺成本高昂,这是一个显著的缺点。目前,H 可以通过许多传统方法制备,例如蒸汽重整、电解和生物制氢工艺。蒸汽重整使用高温蒸汽从包括天然气在内的化石资源中生产氢气。电解是一种将水分子分解为 O 和 H 的电解过程。然而,这两种方法都需要大量的能源,而且从天然气中生产氢气会产生 CO 和污染物等副产物。另一方面,生物制氢比热化学和电化学过程更具环境可持续性和能源效率[3],但大多数概念还没有发展到生产规模。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验