Gatebe Erastus, Herron Hayley, Zakeri Rashid, Ramiah Rajasekaran Pradeep, Aouadi Samir, Kohli Punit
Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, USA.
Langmuir. 2008 Oct 21;24(20):11947-54. doi: 10.1021/la801948z. Epub 2008 Sep 27.
We report here the synthesis and characterization of polydiacetylene (PDA) films and nanotubes using layer-by-layer (LBL) chemistry. 10,12-Docosadiyndioic acid (DCDA) monomer was self-assembled on flat surfaces and inside of nanoporous alumina templates. UV irradiation of DCDA provided polymerized-DCDA (PDCDA) films and nanotubes. We have used zirconium-carboxylate interlayer chemistry to synthesize PDCDA multilayers on flat surfaces and in nanoporous template. PDCDA multilayers were characterized using optical (UV-vis, fluorescence, ellipsometry, FTIR) spectroscopies, ionic current-voltage ( I- V) analysis, and scanning electron microscopy. Ellipsometry, FTIR, electronic absorption and emission spectroscopies showed a uniform DCDA deposition at each deposition cycle. Our optical spectroscopic analysis indicates that carboxylate-zirconium interlinking chemistry is robust. To explain the disorganization in the alkyl portion of PDCDA multilayer films, we propose carboxylate-zirconium interlinkages act as "locks" in between PDCDA layers which restrict the movement of alkyl portion in the films. Because of this locking, the induced-stresses in the polymer chains can not be efficiently relieved. Our ionic resistance data from I- V analysis correlate well with calculated resistance at smaller number of PDCDA layers but significantly deviated for thicker PDCDA nanotubes. These differences were attributed to ion-blocking because some of the PDCDA nanotubes were totally closed and the nonohmic and permselective ionic behaviors when the diameter of the pores approaches the double-layer thickness of the solution inside of the nanotubes.
我们在此报告了使用逐层(LBL)化学方法合成并表征聚二乙炔(PDA)薄膜和纳米管的过程。10,12-二十二碳二炔二酸(DCDA)单体在平坦表面和纳米多孔氧化铝模板内部进行了自组装。对DCDA进行紫外线照射得到了聚合-DCDA(PDCDA)薄膜和纳米管。我们利用锆羧酸盐中间层化学方法在平坦表面和纳米多孔模板中合成了PDCDA多层膜。使用光学(紫外可见、荧光、椭偏、傅里叶变换红外)光谱、离子电流-电压(I-V)分析和扫描电子显微镜对PDCDA多层膜进行了表征。椭偏、傅里叶变换红外、电子吸收和发射光谱表明在每个沉积循环中DCDA的沉积是均匀的。我们的光谱分析表明羧酸盐-锆交联化学是稳定的。为了解释PDCDA多层膜烷基部分的无序状态,我们提出羧酸盐-锆交联在PDCDA层之间起到“锁”的作用,限制了膜中烷基部分的移动。由于这种锁定,聚合物链中的诱导应力无法有效释放。我们从I-V分析得到的离子电阻数据在PDCDA层数较少时与计算电阻相关性良好,但对于较厚的PDCDA纳米管则有显著偏差。这些差异归因于离子阻塞,因为一些PDCDA纳米管完全封闭,并且当孔的直径接近纳米管内溶液的双层厚度时会出现非欧姆和选择性离子行为。