Suppr超能文献

利用电子吸收光谱和荧光共振能量转移研究双层表面的配体-受体相互作用。

Investigating ligand-receptor interactions at bilayer surface using electronic absorption spectroscopy and fluorescence resonance energy transfer.

机构信息

Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, United States.

出版信息

Langmuir. 2012 Sep 11;28(36):12989-98. doi: 10.1021/la300724z. Epub 2012 Jul 16.

Abstract

We investigate interactions between receptors and ligands at bilayer surface of polydiacetylene (PDA) liposomal nanoparticles using changes in electronic absorption spectroscopy and fluorescence resonance energy transfer (FRET). We study the effect of mode of linkage (covalent versus noncovalent) between the receptor and liposome bilayer. We also examine the effect of size-dependent interactions between liposome and analyte through electronic absorption and FRET responses. Glucose (receptor) molecules were either covalently or noncovalently attached at the bilayer of nanoparticles, and they provided selectivity for molecular interactions between glucose and glycoprotein ligands of E. coli. These interactions induced stress on conjugated PDA chain which resulted in changes (blue to red) in the absorption spectrum of PDA. The changes in electronic absorbance also led to changes in FRET efficiency between conjugated PDA chains (acceptor) and fluorophores (Sulphorhodamine-101) (donor) attached to the bilayer surface. Interestingly, we did not find significant differences in UV-vis and FRET responses for covalently and noncovalently bound glucose to liposomes following their interactions with E. coli. We attributed these results to close proximity of glucose receptor molecules to the liposome bilayer surface such that induced stress were similar in both the cases. We also found that PDA emission from direct excitation mechanism was ~2-10 times larger than that of the FRET-based response. These differences in emission signals were attributed to three major reasons: nonspecific interactions between E. coli and liposomes, size differences between analyte and liposomes, and a much higher PDA concentration with respect to sulforhodamine (SR-101). We have proposed a model to explain our experimental observations. Our fundamental studies reported here will help in enhancing our knowledge regarding interactions involved between soft particles at molecular levels.

摘要

我们使用电子吸收光谱和荧光共振能量转移(FRET)研究了聚二乙炔(PDA)脂质体纳米粒子双层表面上受体和配体之间的相互作用。我们研究了受体与脂质体双层之间连接方式(共价与非共价)的影响。我们还通过电子吸收和 FRET 响应研究了脂质体与分析物之间大小依赖性相互作用的影响。葡萄糖(受体)分子通过共价或非共价键附着在纳米粒子的双层上,它们提供了葡萄糖与大肠杆菌糖蛋白配体之间分子相互作用的选择性。这些相互作用在共轭 PDA 链上产生了应力,导致 PDA 的吸收光谱发生变化(从蓝色变为红色)。电子吸收的变化也导致了附着在双层表面上的共轭 PDA 链(受体)和荧光团(磺基罗丹明 101)(供体)之间的 FRET 效率的变化。有趣的是,我们发现与大肠杆菌相互作用后,共价和非共价结合的葡萄糖与脂质体的 UV-vis 和 FRET 响应没有明显差异。我们将这些结果归因于葡萄糖受体分子与脂质体双层表面的接近度,使得两种情况下的诱导应力相似。我们还发现,直接激发机制的 PDA 发射比基于 FRET 的响应大 2-10 倍。这些发射信号的差异归因于三个主要原因:大肠杆菌与脂质体之间的非特异性相互作用、分析物与脂质体之间的大小差异以及 PDA 相对于磺基罗丹明(SR-101)的浓度要高得多。我们提出了一个模型来解释我们的实验观察结果。我们在这里报告的基础研究将有助于提高我们对软粒子在分子水平上相互作用的认识。

相似文献

3
Fluorescence resonance energy transfer in polydiacetylene liposomes.
J Phys Chem B. 2008 Oct 23;112(42):13263-72. doi: 10.1021/jp804640p. Epub 2008 Sep 25.
4
Enhancing the emission of polydiacetylene sensing materials through fluorophore addition and energy transfer.
J Fluoresc. 2008 Mar;18(2):461-71. doi: 10.1007/s10895-007-0287-9. Epub 2007 Dec 20.
5
Polydiacetylene (PDA) Liposome-Based Immunosensor for the Detection of Exosomes.
Biomacromolecules. 2019 Sep 9;20(9):3392-3398. doi: 10.1021/acs.biomac.9b00641. Epub 2019 Aug 6.
7
Micro-contact printing of polydiacetylene liposomes using hydrophilic stamps.
J Nanosci Nanotechnol. 2011 Jul;11(7):6034-8. doi: 10.1166/jnn.2011.4362.
8
Fluorogenic pH-sensitive polydiacetylene (PDA) liposomes as a drug carrier.
J Nanosci Nanotechnol. 2013 Jun;13(6):3792-800. doi: 10.1166/jnn.2013.7205.
9
Direct colorimetric detection of a receptor-ligand interaction by a polymerized bilayer assembly.
Science. 1993 Jul 30;261(5121):585-8. doi: 10.1126/science.8342021.
10
Polydiacetylene single-walled carbon nanotubes nano-hybrid for cellular imaging applications.
J Nanosci Nanotechnol. 2012 Jan;12(1):377-85. doi: 10.1166/jnn.2012.5394.

引用本文的文献

2
COVID-19 and Kidney Disease: Molecular Determinants and Clinical Implications in Renal Cancer.
Eur Urol Focus. 2020 Sep 15;6(5):1086-1096. doi: 10.1016/j.euf.2020.06.002. Epub 2020 Jun 9.
3
Responsive Polydiacetylene Vesicles for Biosensing Microorganisms.
Sensors (Basel). 2018 Feb 15;18(2):599. doi: 10.3390/s18020599.
4
Biosensors for the Detection of Food Pathogens.
Foods. 2014 Sep 2;3(3):511-526. doi: 10.3390/foods3030511.
5
Micro-motors: A motile bacteria based system for liposome cargo transport.
Sci Rep. 2016 Jul 5;6:29369. doi: 10.1038/srep29369.

本文引用的文献

2
Peptide functionalized polydiacetylene liposomes act as a fluorescent turn-on sensor for bacterial lipopolysaccharide.
J Am Chem Soc. 2011 Jun 29;133(25):9720-3. doi: 10.1021/ja204013u. Epub 2011 May 31.
3
Polymorphs and colors of polydiacetylenes: a first principles study.
J Am Chem Soc. 2009 May 27;131(20):6976-88. doi: 10.1021/ja803768u.
4
Fluorescence resonance energy transfer in polydiacetylene liposomes.
J Phys Chem B. 2008 Oct 23;112(42):13263-72. doi: 10.1021/jp804640p. Epub 2008 Sep 25.
5
Membrane processes and biophysical characterization of living cells decorated with chromatic polydiacetylene vesicles.
Biochim Biophys Acta. 2008 May;1778(5):1335-43. doi: 10.1016/j.bbamem.2008.01.028. Epub 2008 Feb 19.
6
Signal-amplifying conjugated polymer-DNA hybrid chips.
Angew Chem Int Ed Engl. 2007;46(25):4667-70. doi: 10.1002/anie.200700419.
7
Modulating fluorescence resonance energy transfer in conjugated liposomes.
Langmuir. 2006 Oct 10;22(21):8615-7. doi: 10.1021/la061340m.
10
Imaging Escherichia coli using functionalized core/shell CdSe/CdS quantum dots.
J Biol Inorg Chem. 2006 Jul;11(5):663-9. doi: 10.1007/s00775-006-0116-7. Epub 2006 May 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验