Suppr超能文献

全脑萎缩率可预测 MCI 向阿尔茨海默病的进展。

Whole brain atrophy rate predicts progression from MCI to Alzheimer's disease.

机构信息

Institute of Clinical Medicine, Unit of Neurology, Kuopio University, Kuopio, Finland.

出版信息

Neurobiol Aging. 2010 Sep;31(9):1601-5. doi: 10.1016/j.neurobiolaging.2008.08.018. Epub 2008 Oct 1.

Abstract

For both clinical and research reasons, it is essential to identify which mild cognitive impairment (MCI) subjects subsequently progress to Alzheimer's disease (AD). The prediction may be facilitated by accelerated whole brain atrophy exhibited by AD subjects. Iterative principal component analysis (IPCA) was used to characterize whole brain atrophy rates using sequential MRI scans for 102 MCI subjects from the Kuopio University Hospital. We modelled the likelihood of progression to probable AD, and found that each additional percent of annualized whole brain atrophy rate was associated with a higher odds ratio (OR) of progression (OR=1.30, p=0.01, 95% CI=1.05-1.60). Our study demonstrates an association between whole brain atrophy rate and subsequent rate of clinical progression from MCI to AD. These findings suggest that IPCA could be an effective brain-imaging marker of progression to AD and useful tool for the evaluation of disease-modifying treatments.

摘要

出于临床和研究的原因,识别哪些轻度认知障碍(MCI)患者随后会发展为阿尔茨海默病(AD)至关重要。AD 患者表现出的全脑萎缩加速可能会有助于预测。使用迭代主成分分析(IPCA)对 102 名来自库奥皮奥大学医院的 MCI 患者的连续 MRI 扫描进行了全脑萎缩率的特征描述。我们对进展为可能的 AD 的可能性进行了建模,发现每年全脑萎缩率增加一个百分点与进展的更高优势比(OR)相关(OR=1.30,p=0.01,95%CI=1.05-1.60)。我们的研究表明,全脑萎缩率与 MCI 向 AD 临床进展的后续速度之间存在关联。这些发现表明,IPCA 可能是 AD 进展的有效脑成像标志物,也是评估疾病修饰治疗的有用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验