Suppr超能文献

使用人工神经网络来对齐生物本体。

Use artificial neural network to align biological ontologies.

作者信息

Huang Jingshan, Dang Jiangbo, Huhns Michael N, Zheng W Jim

机构信息

Dept Biostatistics, Bioinformatics, and Epidemiology, Medical University of South Carolina, Charleston, SC 29425, USA.

出版信息

BMC Genomics. 2008 Sep 16;9 Suppl 2(Suppl 2):S16. doi: 10.1186/1471-2164-9-S2-S16.

Abstract

BACKGROUND

Being formal, declarative knowledge representation models, ontologies help to address the problem of imprecise terminologies in biological and biomedical research. However, ontologies constructed under the auspices of the Open Biomedical Ontologies (OBO) group have exhibited a great deal of variety, because different parties can design ontologies according to their own conceptual views of the world. It is therefore becoming critical to align ontologies from different parties. During automated/semi-automated alignment across biological ontologies, different semantic aspects, i.e., concept name, concept properties, and concept relationships, contribute in different degrees to alignment results. Therefore, a vector of weights must be assigned to these semantic aspects. It is not trivial to determine what those weights should be, and current methodologies depend a lot on human heuristics.

RESULTS

In this paper, we take an artificial neural network approach to learn and adjust these weights, and thereby support a new ontology alignment algorithm, customized for biological ontologies, with the purpose of avoiding some disadvantages in both rule-based and learning-based aligning algorithms. This approach has been evaluated by aligning two real-world biological ontologies, whose features include huge file size, very few instances, concept names in numerical strings, and others.

CONCLUSION

The promising experiment results verify our proposed hypothesis, i.e., three weights for semantic aspects learned from a subset of concepts are representative of all concepts in the same ontology. Therefore, our method represents a large leap forward towards automating biological ontology alignment.

摘要

背景

本体作为形式化的声明性知识表示模型,有助于解决生物和生物医学研究中术语不精确的问题。然而,在开放生物医学本体(OBO)小组主持下构建的本体表现出了很大的多样性,因为不同的团体可以根据自己对世界的概念视图来设计本体。因此,使不同团体的本体保持一致变得至关重要。在跨生物本体进行自动/半自动对齐时,不同的语义方面,即概念名称、概念属性和概念关系,对对齐结果的贡献程度不同。因此,必须为这些语义方面分配一个权重向量。确定这些权重应该是什么并非易事,而且当前的方法很大程度上依赖于人工启发式方法。

结果

在本文中,我们采用人工神经网络方法来学习和调整这些权重,从而支持一种针对生物本体定制的新的本体对齐算法,目的是避免基于规则和基于学习的对齐算法中的一些缺点。这种方法已经通过对齐两个真实世界的生物本体进行了评估,这两个本体的特征包括文件大小巨大、实例很少、概念名称为数字字符串等等。

结论

有前景的实验结果验证了我们提出的假设,即从概念子集中学习到的语义方面的三个权重代表了同一本体中的所有概念。因此,我们的方法朝着生物本体对齐自动化迈出了一大步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3154/2559880/5885fe04b64a/1471-2164-9-S2-S16-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验