Suppr超能文献

关系即模式:弥合 OBO 与 OWL 之间的差距。

Relations as patterns: bridging the gap between OBO and OWL.

机构信息

European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.

出版信息

BMC Bioinformatics. 2010 Aug 31;11:441. doi: 10.1186/1471-2105-11-441.

Abstract

BACKGROUND

most biomedical ontologies are represented in the OBO Flatfile Format, which is an easy-to-use graph-based ontology language. The semantics of the OBO Flatfile Format 1.2 enforces a strict predetermined interpretation of relationship statements between classes. It does not allow flexible specifications that provide better approximations of the intuitive understanding of the considered relations. If relations cannot be accurately expressed then ontologies built upon them may contain false assertions and hence lead to false inferences. Ontologies in the OBO Foundry must formalize the semantics of relations according to the OBO Relationship Ontology (RO). Therefore, being able to accurately express the intended meaning of relations is of crucial importance. Since the Web Ontology Language (OWL) is an expressive language with a formal semantics, it is suitable to de ne the meaning of relations accurately.

RESULTS

we developed a method to provide definition patterns for relations between classes using OWL and describe a novel implementation of the RO based on this method. We implemented our extension in software that converts ontologies in the OBO Flatfile Format to OWL, and also provide a prototype to extract relational patterns from OWL ontologies using automated reasoning. The conversion software is freely available at http://bioonto.de/obo2owl, and can be accessed via a web interface.

CONCLUSIONS

explicitly defining relations permits their use in reasoning software and leads to a more flexible and powerful way of representing biomedical ontologies. Using the extended langua0067e and semantics avoids several mistakes commonly made in formalizing biomedical ontologies, and can be used to automatically detect inconsistencies. The use of our method enables the use of graph-based ontologies in OWL, and makes complex OWL ontologies accessible in a graph-based form. Thereby, our method provides the means to gradually move the representation of biomedical ontologies into formal knowledge representation languages that incorporates an explicit semantics. Our method facilitates the use of OWL-based software in the back-end while ontology curators may continue to develop ontologies with an OBO-style front-end.

摘要

背景

大多数生物医学本体都采用 OBO 平面文件格式(OBO Flatfile Format)表示,这是一种易于使用的基于图的本体语言。OBO 平面文件格式 1.2 的语义强制对类之间的关系语句进行严格的预定解释。它不允许灵活的规范,这些规范可以更好地近似考虑关系的直观理解。如果关系无法准确表达,则基于它们构建的本体可能包含错误的断言,从而导致错误的推理。OBO 基金会中的本体必须根据 OBO 关系本体(RO)形式化关系的语义。因此,能够准确表达关系的含义至关重要。由于 Web 本体语言(OWL)是一种具有形式语义的表达性语言,因此非常适合准确定义关系的含义。

结果

我们开发了一种使用 OWL 为类之间的关系提供定义模式的方法,并描述了一种基于该方法的 RO 的新实现。我们在软件中实现了我们的扩展,该软件将 OBO 平面文件格式的本体转换为 OWL,还提供了一个原型,用于使用自动化推理从 OWL 本体中提取关系模式。转换软件可在 http://bioonto.de/obo2owl 上免费获得,并可通过网络界面访问。

结论

显式定义关系允许在推理软件中使用它们,并为表示生物医学本体提供更灵活、更强大的方式。使用扩展的语言和语义可以避免在形式化生物医学本体时常见的几个错误,并可用于自动检测不一致性。使用我们的方法可以使基于图的本体在 OWL 中使用,并以基于图的形式访问复杂的 OWL 本体。这样,我们的方法提供了一种将生物医学本体的表示逐渐迁移到包含显式语义的正式知识表示语言中的方法。我们的方法为基于 OWL 的软件在后端的使用提供了便利,而本体维护者可以继续使用 OBO 风格的前端开发本体。

相似文献

1
Relations as patterns: bridging the gap between OBO and OWL.
BMC Bioinformatics. 2010 Aug 31;11:441. doi: 10.1186/1471-2105-11-441.
2
Unintended consequences of existential quantifications in biomedical ontologies.
BMC Bioinformatics. 2011 Nov 24;12:456. doi: 10.1186/1471-2105-12-456.
3
Mapping between the OBO and OWL ontology languages.
J Biomed Semantics. 2011 Mar 7;2 Suppl 1(Suppl 1):S3. doi: 10.1186/2041-1480-2-S1-S3.
4
OBO to OWL: a protege OWL tab to read/save OBO ontologies.
Bioinformatics. 2007 Jul 15;23(14):1868-70. doi: 10.1093/bioinformatics/btm258. Epub 2007 May 12.
5
A common layer of interoperability for biomedical ontologies based on OWL EL.
Bioinformatics. 2011 Apr 1;27(7):1001-8. doi: 10.1093/bioinformatics/btr058. Epub 2011 Feb 21.
6
OBO Explorer: an editor for Open Biomedical Ontologies in OWL.
Bioinformatics. 2008 Feb 1;24(3):443-4. doi: 10.1093/bioinformatics/btm593. Epub 2007 Dec 1.
7
Semi-automated ontology generation within OBO-Edit.
Bioinformatics. 2010 Jun 15;26(12):i88-96. doi: 10.1093/bioinformatics/btq188.
8
Aber-OWL: a framework for ontology-based data access in biology.
BMC Bioinformatics. 2015 Jan 28;16:26. doi: 10.1186/s12859-015-0456-9.
9
Reasoning with bio-ontologies: using relational closure rules to enable practical querying.
Bioinformatics. 2011 Jun 1;27(11):1562-8. doi: 10.1093/bioinformatics/btr164. Epub 2011 Apr 5.
10
A UML profile for the OBO relation ontology.
BMC Genomics. 2012;13 Suppl 5(Suppl 5):S3. doi: 10.1186/1471-2164-13-S5-S3. Epub 2012 Oct 19.

引用本文的文献

2
Semantic similarity and machine learning with ontologies.
Brief Bioinform. 2021 Jul 20;22(4). doi: 10.1093/bib/bbaa199.
3
Structuring, reuse and analysis of electronic dental data using the Oral Health and Disease Ontology.
J Biomed Semantics. 2020 Aug 20;11(1):8. doi: 10.1186/s13326-020-00222-0.
4
Formal axioms in biomedical ontologies improve analysis and interpretation of associated data.
Bioinformatics. 2020 Apr 1;36(7):2229-2236. doi: 10.1093/bioinformatics/btz920.
5
Onto2Vec: joint vector-based representation of biological entities and their ontology-based annotations.
Bioinformatics. 2018 Jul 1;34(13):i52-i60. doi: 10.1093/bioinformatics/bty259.
6
Cell type discovery and representation in the era of high-content single cell phenotyping.
BMC Bioinformatics. 2017 Dec 21;18(Suppl 17):559. doi: 10.1186/s12859-017-1977-1.
7
Inferring ontology graph structures using OWL reasoning.
BMC Bioinformatics. 2018 Jan 5;19(1):7. doi: 10.1186/s12859-017-1999-8.
8
Evaluating the effect of annotation size on measures of semantic similarity.
J Biomed Semantics. 2017 Feb 13;8(1):7. doi: 10.1186/s13326-017-0119-z.
9
MicrO: an ontology of phenotypic and metabolic characters, assays, and culture media found in prokaryotic taxonomic descriptions.
J Biomed Semantics. 2016 Apr 12;7:18. doi: 10.1186/s13326-016-0060-6. eCollection 2016.
10
Representing vision and blindness.
J Biomed Semantics. 2016 Mar 30;7:15. doi: 10.1186/s13326-016-0058-0. eCollection 2016.

本文引用的文献

1
Strengths and limitations of formal ontologies in the biomedical domain.
Rev Electron Comun Inf Inov Saude. 2009 Mar 1;3(1):31-45. doi: 10.3395/reciis.v3i1.241en.
2
Applying the functional abnormality ontology pattern to anatomical functions.
J Biomed Semantics. 2010 Mar 31;1(1):4. doi: 10.1186/2041-1480-1-4.
3
A set of ontologies to drive tools for the control of vector-borne diseases.
J Biomed Inform. 2011 Feb;44(1):42-7. doi: 10.1016/j.jbi.2010.03.012. Epub 2010 Apr 2.
4
Evolution of the Sequence Ontology terms and relationships.
J Biomed Inform. 2011 Feb;44(1):87-93. doi: 10.1016/j.jbi.2010.03.002. Epub 2010 Mar 10.
5
7
OBO to OWL: a protege OWL tab to read/save OBO ontologies.
Bioinformatics. 2007 Jul 15;23(14):1868-70. doi: 10.1093/bioinformatics/btm258. Epub 2007 May 12.
8
Referent tracking: the problem of negative findings.
Stud Health Technol Inform. 2006;124:741-6.
9
Relations in biomedical ontologies.
Genome Biol. 2005;6(5):R46. doi: 10.1186/gb-2005-6-5-r46. Epub 2005 Apr 28.
10
The Sequence Ontology: a tool for the unification of genome annotations.
Genome Biol. 2005;6(5):R44. doi: 10.1186/gb-2005-6-5-r44. Epub 2005 Apr 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验