Yen Kelvin, Steinsaltz David, Mobbs Charles Vernon
Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.
Exp Gerontol. 2008 Dec;43(12):1044-51. doi: 10.1016/j.exger.2008.09.006. Epub 2008 Sep 14.
A key goal of gerontology is to discover the factors that influence the rate of senescence, which in this context refers to the age-dependent acceleration of mortality, inversely related to the morality rate doubling time. In contrast factors that influence only initial mortality rate are thought to be less relevant to the fundamental processes of aging. To resolve these two determinants of mortality rate and lifespan, initial morality rate and rate of senescence are calculated using the Gompertz equation. Despite theoretical and empirical evidence that the Gompertz parameters are most consistently and reliably estimated by maximum-likelihood techniques, and somewhat less so by non-linear regression, many researchers continue to use linear regression on the log-transformed hazard rate. The present study compares these three methods in the analysis of several published studies. Estimates of the mortality rate parameters were then used to compare the theoretical values to the actual values of the following parameters: maximal lifespan, 50% survival times, variance in control groups and agreement with the distribution of deaths. These comparisons indicate that maximum-likelihood and non-linear regression estimates provide better estimates of mortality rate parameters than log-linear regression. Of particular interest, the improved estimates indicate that most genetic manipulations in mice that increase lifespan do so by decreasing initial mortality rate, not rate of senescence, whereas most genetic manipulations that decrease lifespan surprisingly do so by increasing the rate of senescence, not initial mortality rate.
老年学的一个关键目标是发现影响衰老速率的因素,在此背景下,衰老指的是与死亡率加倍时间成反比的、随年龄增长的死亡率加速上升。相比之下,那些仅影响初始死亡率的因素被认为与衰老的基本过程关联较小。为了区分死亡率和寿命的这两个决定因素,使用冈珀茨方程来计算初始死亡率和衰老速率。尽管有理论和实证证据表明,通过最大似然技术能最一致且可靠地估计冈珀茨参数,而非线性回归的估计效果稍逊一筹,但许多研究人员仍继续对对数变换后的风险率进行线性回归分析。本研究在对几项已发表研究的分析中比较了这三种方法。随后,死亡率参数的估计值被用于将以下参数的理论值与实际值进行比较:最大寿命、50%存活时间、对照组的方差以及与死亡分布的一致性。这些比较表明,与对数线性回归相比,最大似然估计和非线性回归估计能更好地估计死亡率参数。特别值得注意的是,改进后的估计表明,小鼠中大多数延长寿命的基因操作是通过降低初始死亡率而非衰老速率来实现的,而大多数缩短寿命的基因操作令人惊讶地是通过提高衰老速率而非初始死亡率来实现的。