Maglica Zeljka, Striebel Frank, Weber-Ban Eilika
ETH Zürich, Institute of Molecular Biology and Biophysics, Schafmattstr. 20, CH-8093 Zürich, Switzerland.
J Mol Biol. 2008 Dec 12;384(2):503-11. doi: 10.1016/j.jmb.2008.09.046. Epub 2008 Sep 26.
ATP-dependent protein degradation in bacteria is carried out by barrel-shaped proteases architecturally related to the proteasome. In Escherichia coli, ClpP interacts with two alternative ATPases, ClpA or ClpX, to form active protease complexes. ClpAP and ClpXP show different but overlapping substrate specificities. ClpXP is considered the primary recipient of ssrA-tagged substrates while ClpAP in complex with ClpS processes N-end rule substrates. Notably, in its free form, but not in complex with ClpS, ClpAP also degrades ssrA-tagged substrates and its own chaperone component, ClpA. To reveal the mechanism of ClpAP-mediated ClpA degradation, termed autodegradation, and its possible role in regulating ClpAP levels, we dissected ClpA to show that the flexible C-terminus of the second AAA module serves as the degradation signal. We demonstrate that ClpA becomes largely resistant to autodegradation in the absence of its C-terminus and, conversely, transfer of the last 11 residues of ClpA to the C-terminus of green fluorescent protein (GFP) renders GFP a substrate of ClpAP. This autodegradation tag bears similarity to the ssrA-tag in its degradation behavior, displaying similar catalytic turnover rates when coupled to GFP but a twofold lower apparent affinity constant compared to ssrA-tagged GFP. We show that, in analogy to the prevention of ssrA-mediated recognition, the adaptor ClpS inhibits autodegradation by a specificity switch as opposed to direct masking of the degradation signal. Our results demonstrate that in the presence of ssrA-tagged substrates, ClpA autodegradation will be competitively reduced. This simple mechanism allows for dynamic reallocation of free ClpAP versus ClpAPS in response to the presence of ssrA-tagged substrates.
细菌中依赖ATP的蛋白质降解是由与蛋白酶体在结构上相关的桶状蛋白酶来执行的。在大肠杆菌中,ClpP与两种交替的ATP酶ClpA或ClpX相互作用,形成活性蛋白酶复合物。ClpAP和ClpXP表现出不同但重叠的底物特异性。ClpXP被认为是带有ssrA标签底物的主要受体,而与ClpS形成复合物的ClpAP则处理N端规则底物。值得注意的是,ClpAP以游离形式而非与ClpS形成复合物时,也会降解带有ssrA标签的底物及其自身的伴侣成分ClpA。为了揭示ClpAP介导的ClpA降解(称为自降解)的机制及其在调节ClpAP水平方面的可能作用,我们对ClpA进行了剖析,结果表明第二个AAA模块的柔性C末端充当降解信号。我们证明,在没有其C末端的情况下,ClpA对自降解具有很大的抗性,相反,将ClpA的最后11个残基转移到绿色荧光蛋白(GFP)的C末端会使GFP成为ClpAP的底物。这种自降解标签在降解行为上与ssrA标签相似,与GFP偶联时显示出相似的催化周转率,但与带有ssrA标签的GFP相比,表观亲和力常数低两倍。我们表明,类似于防止ssrA介导的识别,衔接子ClpS通过特异性转换抑制自降解,而不是直接掩盖降解信号。我们的结果表明,在存在带有ssrA标签的底物时,ClpA自降解将被竞争性降低。这种简单的机制允许根据带有ssrA标签的底物的存在,对游离的ClpAP与ClpAPS进行动态重新分配。