Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
Nat Commun. 2024 Jul 13;15(1):5890. doi: 10.1038/s41467-024-49920-8.
Protein turnover is critical for proteostasis, but turnover quantification is challenging, and even in well-studied E. coli, proteome-wide measurements remain scarce. Here, we quantify the turnover rates of ~3200 E. coli proteins under 13 conditions by combining heavy isotope labeling with complement reporter ion quantification and find that cytoplasmic proteins are recycled when nitrogen is limited. We use knockout experiments to assign substrates to the known cytoplasmic ATP-dependent proteases. Surprisingly, none of these proteases are responsible for the observed cytoplasmic protein degradation in nitrogen limitation, suggesting that a major proteolysis pathway in E. coli remains to be discovered. Lastly, we show that protein degradation rates are generally independent of cell division rates. Thus, we present broadly applicable technology for protein turnover measurements and provide a rich resource for protein half-lives and protease substrates in E. coli, complementary to genomics data, that will allow researchers to study the control of proteostasis.
蛋白质周转对于蛋白质稳态至关重要,但周转的量化具有挑战性,即使在研究充分的大肠杆菌中,全蛋白质组范围的测量仍然很少。在这里,我们通过结合重同位素标记与互补报告离子定量的方法,定量了 13 种条件下约 3200 种大肠杆菌蛋白质的周转率,发现当氮源有限时,细胞质蛋白质会被回收。我们使用敲除实验将底物分配给已知的细胞质 ATP 依赖型蛋白酶。令人惊讶的是,这些蛋白酶中没有一种负责观察到的氮限制下细胞质蛋白质的降解,这表明大肠杆菌中仍有待发现的主要蛋白水解途径。最后,我们表明蛋白质降解速率通常与细胞分裂速率无关。因此,我们提出了一种广泛适用于蛋白质周转测量的技术,并提供了大肠杆菌中蛋白质半衰期和蛋白酶底物的丰富资源,与基因组学数据互补,使研究人员能够研究蛋白质稳态的控制。