De Filippis Lidia, Ferrari Daniela, Rota Nodari Laura, Amati Bruno, Snyder Evan, Vescovi Angelo Luigi
Università degli Studi Bicocca-Millan, Milan, Italy.
PLoS One. 2008 Oct 2;3(10):e3310. doi: 10.1371/journal.pone.0003310.
Human neural stem cells (hNSC) represent an essential source of renewable brain cells for both experimental studies and cell replacement therapies. Their relatively slow rate of proliferation and physiological senescence in culture make their use cumbersome under some experimental and pre-clinical settings. The immortalization of hNSC with the v-myc gene (v-IhNSC) has been shown to generate stem cells endowed with enhanced proliferative capacity, which greatly facilitates the study of hNSCs, both in vitro and in vivo. Despite the excellent safety properties displayed by v-IhNSCs--which do not transform in vitro and are not tumorigenic in vivo--the v-myc gene contains several mutations and recombination elements, whose role(s) and effects remains to be elucidated, yielding unresolved safety concerns. To address this issue, we used a c-myc T58A retroviral vector to establish an immortal cell line (T-IhNSC) from the same hNSCs used to generate the original v-IhNSCs and compared their characteristics with the latter, with hNSC and with hNSC immortalized using c-myc wt (c-IhNSC). T-IhNSCs displayed an enhanced self-renewal ability, with their proliferative capacity and clonogenic potential being remarkably comparable to those of v-IhNSC and higher than wild type hNSCs and c-IhNSCs. Upon growth factors removal, T-IhNSC promptly gave rise to well-differentiated neurons, astrocytes and most importantly, to a heretofore undocumented high percentage of human oligodendrocytes (up to 23%). Persistent growth-factor dependence, steady functional properties, lack of ability to generate colonies in soft-agar colony-forming assay and to establish tumors upon orthotopic transplantation, point to the fact that immortalization by c-myc T58A does not bring about tumorigenicity in hNSCs. Hence, this work describes a novel and continuous cell line of immortalized human multipotent neural stem cells, in which the immortalizing agent is represented by a single gene which, in turn, carries a single and well characterized mutation. From a different perspective, these data report on a safe approach to increase human neural stem cells propagation in culture, without altering their basic properties. These T-IhNSC line provides a versatile model for the elucidation of the mechanisms involved in human neural stem cells expansion and for development of high throughput assays for both basic and translational research on human neural cell development. The improved proclivity of T-IhNSC to generate human oligodendrocytes propose T-IhNSC as a feasible candidate for the design of experimental and, perhaps, therapeutic approaches in demyelinating diseases.
人类神经干细胞(hNSC)是用于实验研究和细胞替代疗法的可再生脑细胞的重要来源。它们在培养中的增殖速度相对较慢且会发生生理性衰老,这使得它们在某些实验和临床前环境中的使用变得繁琐。已证明用v - myc基因使hNSC永生化(v - IhNSC)可产生具有增强增殖能力的干细胞,这极大地促进了hNSC在体外和体内的研究。尽管v - IhNSC表现出出色的安全特性——在体外不转化且在体内不具有致瘤性——但v - myc基因包含多个突变和重组元件,其作用和影响仍有待阐明,从而产生了未解决的安全问题。为了解决这个问题,我们使用c - myc T58A逆转录病毒载体从用于产生原始v - IhNSC的相同hNSC建立了一个永生化细胞系(T - IhNSC),并将其特征与后者、hNSC以及用c - myc野生型(c - IhNSC)永生化的hNSC进行了比较。T - IhNSC表现出增强的自我更新能力,其增殖能力和克隆形成潜力与v - IhNSC相当,且高于野生型hNSC和c - IhNSC。去除生长因子后,T - IhNSC迅速分化为分化良好的神经元、星形胶质细胞,最重要的是,分化为迄今为止未被记录的高比例人类少突胶质细胞(高达23%)。持续的生长因子依赖性、稳定的功能特性、在软琼脂集落形成试验中缺乏形成集落的能力以及原位移植后无法形成肿瘤,表明c - myc T58A永生化不会导致hNSC产生致瘤性。因此,这项工作描述了一种新型的永生化人类多能神经干细胞连续细胞系,其中永生化剂由单个基因代表,该基因又携带单个且特征明确的突变。从不同的角度来看,这些数据报道了一种在不改变其基本特性的情况下增加人类神经干细胞在培养中增殖的安全方法。这些T - IhNSC系为阐明人类神经干细胞扩增所涉及的机制以及开发用于人类神经细胞发育基础研究和转化研究的高通量测定提供了一个通用模型。T - IhNSC生成人类少突胶质细胞的倾向提高,这表明T - IhNSC是设计脱髓鞘疾病实验和可能治疗方法的可行候选者。