Das Madhurima, Gursky Olga
Department of Physiology and Biophysics, Boston University School of Medicine, W321, Boston, MA, 02118, USA,
Adv Exp Med Biol. 2015;855:175-211. doi: 10.1007/978-3-319-17344-3_8.
Apolipoproteins are protein constituents of lipoproteins that transport cholesterol and fat in circulation and are central to cardiovascular health and disease. Soluble apolipoproteins can transiently dissociate from the lipoprotein surface in a labile free form that can misfold, potentially leading to amyloid disease. Misfolding of apoA-I, apoA-II, and serum amyloid A (SAA) causes systemic amyloidoses, apoE4 is a critical risk factor in Alzheimer's disease, and apolipoprotein misfolding is also implicated in cardiovascular disease. To explain why apolipoproteins are over-represented in amyloidoses, it was proposed that the amphipathic α-helices, which form the lipid surface-binding motif in this protein family, have high amyloid-forming propensity. Here, we use 12 sequence-based bioinformatics approaches to assess amyloid-forming potential of human apolipoproteins and to identify segments that are likely to initiate β-aggregation. Mapping such segments on the available atomic structures of apolipoproteins helps explain why some of them readily form amyloid while others do not. Our analysis shows that nearly all amyloidogenic segments: (i) are largely hydrophobic, (ii) are located in the lipid-binding amphipathic α-helices in the native structures of soluble apolipoproteins, (iii) are predicted in both native α-helices and β-sheets in the insoluble apoB, and (iv) are predicted to form parallel in-register β-sheet in amyloid. Most of these predictions have been verified experimentally for apoC-II, apoA-I, apoA-II and SAA. Surprisingly, the rank order of the amino acid sequence propensity to form amyloid (apoB>apoA-II>apoC-II≥apoA-I, apoC-III, SAA, apoC-I>apoA-IV, apoA-V, apoE) does not correlate with the proteins' involvement in amyloidosis. Rather, it correlates directly with the strength of the protein-lipid association, which increases with increasing protein hydrophobicity. Therefore, the lipid surface-binding function and the amyloid-forming propensity are both rooted in apolipoproteins' hydrophobicity, suggesting that functional constraints make it difficult to completely eliminate pathogenic apolipoprotein misfolding. We propose that apolipoproteins have evolved protective mechanisms against misfolding, such as the sequestration of the amyloidogenic segments via the native protein-lipid and protein-protein interactions involving amphipathic α-helices and, in case of apoB, β-sheets.
载脂蛋白是脂蛋白的蛋白质成分,在血液循环中运输胆固醇和脂肪,对心血管健康和疾病至关重要。可溶性载脂蛋白可以以不稳定的游离形式暂时从脂蛋白表面解离,这种游离形式可能会错误折叠,从而有可能导致淀粉样变性疾病。载脂蛋白A-I、载脂蛋白A-II和血清淀粉样蛋白A(SAA)的错误折叠会导致全身性淀粉样变性,载脂蛋白E4是阿尔茨海默病的一个关键风险因素,载脂蛋白错误折叠也与心血管疾病有关。为了解释为什么载脂蛋白在淀粉样变性中占比过高,有人提出,在这个蛋白质家族中形成脂质表面结合基序的两亲性α螺旋具有很高的形成淀粉样蛋白的倾向。在这里,我们使用12种基于序列的生物信息学方法来评估人类载脂蛋白形成淀粉样蛋白的潜力,并识别可能引发β聚集的片段。将这些片段映射到载脂蛋白的现有原子结构上,有助于解释为什么其中一些片段容易形成淀粉样蛋白而另一些则不会。我们的分析表明,几乎所有的淀粉样蛋白生成片段:(i)在很大程度上是疏水的,(ii)位于可溶性载脂蛋白天然结构中的脂质结合两亲性α螺旋中,(iii)在不溶性载脂蛋白B的天然α螺旋和β折叠中都有预测,(iv)预计在淀粉样蛋白中形成平行的对齐β折叠。其中大多数预测已通过对载脂蛋白C-II、载脂蛋白A-I、载脂蛋白A-II和SAA的实验验证。令人惊讶的是,氨基酸序列形成淀粉样蛋白的倾向顺序(载脂蛋白B>载脂蛋白A-II>载脂蛋白C-II≥载脂蛋白A-I、载脂蛋白C-III、SAA、载脂蛋白C-I>载脂蛋白A-IV、载脂蛋白A-V、载脂蛋白E)与蛋白质参与淀粉样变性的情况不相关。相反,它与蛋白质-脂质结合的强度直接相关,而蛋白质-脂质结合强度会随着蛋白质疏水性的增加而增加。因此,脂质表面结合功能和形成淀粉样蛋白的倾向都源于载脂蛋白的疏水性,这表明功能限制使得很难完全消除致病性载脂蛋白错误折叠。我们提出,载脂蛋白已经进化出针对错误折叠的保护机制,例如通过涉及两亲性α螺旋以及在载脂蛋白B的情况下通过β折叠的天然蛋白质-脂质和蛋白质-蛋白质相互作用来隔离淀粉样蛋白生成片段。