Kitamura Akihiko, Ishibashi Hitoshi, Watanabe Miho, Takatsuru Yusuke, Brodwick Malcolm, Nabekura Junichi
Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan.
Neurosci Res. 2008 Dec;62(4):270-7. doi: 10.1016/j.neures.2008.09.002. Epub 2008 Sep 18.
The inhibitory action of GABA is a consequence of a relatively hyperpolarized Cl(-) reversal potential (E(Cl)), which results from the activity of K(+)-Cl(-) cotransporter (KCC2). In this study we investigated the effects of glutamate and glutamatergic synaptic activity on E(Cl). In dissociated culture of mature hippocampal neurons, the application of glutamate caused positive E(Cl) shifts with two distinct temporal components. Following a large transient depolarizing state, the sustained depolarizing state (E(Cl)-sustained) lasted more than 30 min. The E(Cl)-sustained disappeared in the absence of external Ca(2+) during glutamate application and was blocked by both AP5 and MK801, but not by nifedipine. The E(Cl)-sustained was also induced by NMDA. The E(Cl)-sustained was blocked by furosemide, a blocker of both KCC2 and NKCC1, but not bumetanide, a blocker of NKCC1. On the other hand, in immature neurons having less expression of KCC2, NMDA failed to induce the sustained depolarizing E(Cl) shift. In organotypic slice cultured neurons, repetitive activation of glutamatergic afferents also generated a sustained depolarizing E(Cl) shift. These results suggest that Ca(2+) influx through NMDA receptors causes the down-regulation of KCC2 and gives rise to long lasting positive E(Cl) shifts, which might contribute to hyperexcitability, LTP, and epileptiform discharges.
γ-氨基丁酸(GABA)的抑制作用是相对超极化的氯离子反转电位(E(Cl))的结果,该电位由钾氯共转运体(KCC2)的活性产生。在本研究中,我们研究了谷氨酸和谷氨酸能突触活动对E(Cl)的影响。在成熟海马神经元的解离培养物中,应用谷氨酸会导致E(Cl)出现正向变化,具有两个不同的时间成分。在经历一个大的瞬时去极化状态后,持续去极化状态(E(Cl)-持续)持续超过30分钟。在应用谷氨酸期间,若没有细胞外钙离子,E(Cl)-持续消失,并且被AP5和MK801阻断,但不被硝苯地平阻断。E(Cl)-持续也可由N-甲基-D-天冬氨酸(NMDA)诱导产生。E(Cl)-持续被呋塞米阻断,呋塞米是KCC2和钠钾氯共转运体1(NKCC1)的阻断剂,但不被布美他尼阻断,布美他尼是NKCC1的阻断剂。另一方面,在KCC2表达较少的未成熟神经元中,NMDA未能诱导持续的去极化E(Cl)变化。在器官型脑片培养的神经元中,谷氨酸能传入神经的重复激活也产生了持续的去极化E(Cl)变化。这些结果表明,通过NMDA受体的钙离子内流导致KCC2下调,并引起持久的正向E(Cl)变化,这可能导致兴奋性过高、长时程增强(LTP)和癫痫样放电。