Neuroscience Research Laboratory, Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, The University of British Columbia, Vancouver, Canada.
Exp Neurol. 2010 Jan;221(1):157-65. doi: 10.1016/j.expneurol.2009.10.017. Epub 2009 Oct 29.
The equilibrium potential (E(GABA)(-PSC)) for gamma-aminobutyric acid (GABA) A receptor mediated inhibitory postsynaptic currents (PSCs) in hippocampal CA1 pyramidal neurons shifts when theta-burst stimulation (four pulses at 100 Hz in each burst in a train consisting of five bursts with an inter-burst interval of 200 ms, the train repeated thrice at 30-s intervals) is applied to the input. E(GABA)(-PSC) is regulated by K(+)/Cl(-) co-transporter (KCC2). GABA(B) receptors are implicated in modulating KCC2 levels. In the current study, the involvement of KCC2, as well as GABA(B) receptors, in theta-burst-mediated shifts in E(GABA)(-PSC) was examined. Whole-cell patch recordings were made from hippocampal CA1 pyramidal neurons (from 9 to 12 days old rats), in a slice preparation. Glutamatergic excitatory postsynaptic currents were blocked with dl-2-amino-5-phosphonovaleric acid (50 microM) and 6,7-dinitroquinoxaline-2,3-dione (20 microM). The PSC and the E(GABA)(-PSC) were stable when stimulated at 0.05 Hz. However, both changed following a 30-min stimulation at 0.5 or 1 Hz. Furosemide (500 microM) and KCC2 anti-sense in the recording pipette but not bumetanide (20 or 100 microM) or KCC2 sense, blocked the changes, suggesting KCC2 involvement. Theta-burst stimulation induced a negative shift in E(GABA)(-PSC), which was prevented by KCC2 anti-sense; however, KCC2 sense had no effect. CGP55845 (2 microM), a GABA(B) antagonist, applied in the superfusing medium, or GDP-beta-S in the recording pipette, blocked the shift in E(GABA)(-PSC). These results indicate that activity-mediated plasticity in E(GABA)(-PSC) occurs in hippocampal CA1 pyramidal neurons and theta-burst-induced negative shift in E(GABA)(-PSC) requires KCC2, GABA(B) receptors and G-protein activation.
当在输入施加θ爆发刺激(每个爆发中包含四个脉冲,每个爆发中在包含五个爆发的串中以 200 毫秒的间隔爆发一次,串重复三次,间隔 30 秒)时,γ-氨基丁酸(GABA)A 受体介导的抑制性突触后电流(PSCs)的平衡电位(E(GABA)(-PSC))会发生变化。E(GABA)(-PSC)由 K(+)/Cl(-)共转运体(KCC2)调节。GABA(B)受体参与调节 KCC2 水平。在本研究中,检查了 KCC2 以及 GABA(B)受体在θ爆发介导的 E(GABA)(-PSC)变化中的作用。在切片制备中,从海马 CA1 锥体神经元(来自 9 至 12 天大的大鼠)进行全细胞膜片钳记录。谷氨酸能兴奋性突触后电流被 dl-2-氨基-5-磷酸戊酸(50 microM)和 6,7-二硝基喹喔啉-2,3-二酮(20 microM)阻断。当以 0.05 Hz 刺激时,PSC 和 E(GABA)(-PSC)稳定。然而,当以 0.5 或 1 Hz 刺激 30 分钟时,两者均发生变化。在记录电极中使用呋塞米(500 microM)和 KCC2 反义,但不使用布美他尼(20 或 100 microM)或 KCC2 正义,可阻断变化,表明 KCC2 的参与。θ爆发刺激诱导 E(GABA)(-PSC)负向偏移,该偏移被 KCC2 反义阻断;然而,KCC2 正义没有作用。在超流介质中施加 GABA(B)拮抗剂 CGP55845(2 microM)或在记录电极中使用 GDP-β-S 可阻断 E(GABA)(-PSC)的变化。这些结果表明,在海马 CA1 锥体神经元中发生了 E(GABA)(-PSC)的活动介导的可塑性,并且θ爆发诱导的 E(GABA)(-PSC)负向偏移需要 KCC2、GABA(B)受体和 G 蛋白激活。