Chalkia Dimitra, Nikolaidis Nikolas, Makalowski Wojciech, Klein Jan, Nei Masatoshi
Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park, USA.
Mol Biol Evol. 2008 Dec;25(12):2717-33. doi: 10.1093/molbev/msn215. Epub 2008 Oct 6.
In eukaryotes, the assembly and elongation of unbranched actin filaments is controlled by formins, which are long, multidomain proteins. These proteins are important for dynamic cellular processes such as determination of cell shape, cell division, and cellular interaction. Yet, no comprehensive study has been done about the origins and evolution of this gene family. We therefore performed extensive phylogenetic and motif analyses of the formin genes by examining 597 prokaryotic and 53 eukaryotic genomes. Additionally, we used three-dimensional protein structure data in an effort to uncover distantly related sequences. Our results suggest that the formin homology 2 (FH2) domain, which promotes the formation of actin filaments, is a eukaryotic innovation and apparently originated only once in eukaryotic evolution. Despite the high degree of FH2 domain sequence divergence, the FH2 domains of most eukaryotic formins are predicted to assume the same fold and thus have similar functions. The formin genes have experienced multiple taxon-specific duplications and followed the birth-and-death model of evolution. Additionally, the formin genes experienced taxon-specific genomic rearrangements that led to the acquisition of unrelated protein domains. The evolutionary diversification of formin genes apparently increased the number of formin's interacting molecules and consequently contributed to the development of a complex and precise actin assembly mechanism. The diversity of formin types is probably related to the range of actin-based cellular processes that different cells or organisms require. Our results indicate the importance of gene duplication and domain acquisition in the evolution of the eukaryotic cell and offer insights into how a complex system, such as the cytoskeleton, evolved.
在真核生物中,无分支肌动蛋白丝的组装和延伸由formin蛋白控制,formin蛋白是一类长的、具有多个结构域的蛋白质。这些蛋白质对于动态细胞过程如细胞形状的确定、细胞分裂和细胞间相互作用非常重要。然而,尚未对该基因家族的起源和进化进行全面研究。因此,我们通过研究597个原核生物和53个真核生物基因组,对formin基因进行了广泛的系统发育和基序分析。此外,我们使用三维蛋白质结构数据来寻找远缘相关序列。我们的结果表明,促进肌动蛋白丝形成的formin同源2(FH2)结构域是真核生物的一项创新,显然在真核生物进化过程中仅起源过一次。尽管FH2结构域序列差异很大,但大多数真核生物formin蛋白的FH2结构域预计具有相同的折叠方式,因此具有相似的功能。formin基因经历了多次特定分类群的复制,并遵循了生死进化模型。此外,formin基因经历了特定分类群的基因组重排,导致获得了不相关的蛋白质结构域。formin基因的进化多样化显然增加了formin相互作用分子的数量,从而有助于形成复杂而精确的肌动蛋白组装机制。formin类型的多样性可能与不同细胞或生物体所需的基于肌动蛋白的细胞过程范围有关。我们的结果表明了基因复制和结构域获得在真核细胞进化中的重要性,并为诸如细胞骨架这样的复杂系统如何进化提供了见解。