Suppr超能文献

多分散非加和硬球系统中的相平衡

Phase equilibria in polydisperse nonadditive hard-sphere systems.

作者信息

Paricaud Patrice

机构信息

Laboratoire de Chimie et Procédés, ENSTA, ParisTech, 32 Bd Victor, 75739, Paris cedex 15, France.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Aug;78(2 Pt 1):021202. doi: 10.1103/PhysRevE.78.021202. Epub 2008 Aug 14.

Abstract

Colloidal particles naturally exhibit a size polydispersity that can greatly influence their phase behavior in solution. Nonadditive hard-sphere (NAHS) mixtures are simple and well-suited model systems to represent phase transitions in colloid systems. Here, we propose an analytical equation of state (EOS) for NAHS fluid mixtures, which can be straightforwardly applied to polydisperse systems. For positive values of the nonadditivity parameter Delta the model gives accurate predictions of the simulated fluid-fluid coexistence curves and compressibility factors. NPT Monte Carlo simulations of the mixing properties of the NAHS symmetric binary mixture with Delta>0 are reported. It is shown that the enthalpy of mixing is largely positive and overcomes the positive entropy of mixing when the pressure is increased, leading to a fluid-fluid phase transition with a lower critical solution pressure. Phase equilibria in polydisperse systems are predicted with the model by using the density moment formalism [P. Sollich, Adv. Chem. Phys. 116, 265 (2001)]. We present predictions of the cloud and shadow curves for polydisperse NAHS systems composed of monodisperse spheres and polydisperse colloid particles. A fixed nonadditivity parameter Delta > 0 is assumed between the monodisperse and polydisperse spheres, and a Schulz distribution is used to represent the size polydispersity. Polydispersity is found to increase the extent of the immiscibility region. The predicted cloud and shadow curves depend dramatically on the upper cutoff diameter sigmac of the Schulz distribution, and three-phase equilibria can occur for large values of sigmac.

摘要

胶体颗粒天然具有尺寸多分散性,这会极大地影响它们在溶液中的相行为。非加和硬球(NAHS)混合物是用于描述胶体系统相变的简单且合适的模型体系。在此,我们提出了一种适用于NAHS流体混合物的解析状态方程(EOS),它可直接应用于多分散体系。对于非加和参数Delta的正值,该模型能准确预测模拟的流体 - 流体共存曲线和压缩因子。报道了对Delta>0的NAHS对称二元混合物混合性质的NPT蒙特卡罗模拟。结果表明,混合焓在很大程度上是正的,并且当压力增加时会克服混合熵的正值,从而导致具有较低临界溶解压力的流体 - 流体相变。通过使用密度矩形式理论[P. Sollich, Adv. Chem. Phys. 116, 265 (2001)],该模型可预测多分散体系中的相平衡。我们给出了由单分散球体和多分散胶体颗粒组成的多分散NAHS体系的浊点曲线和阴影曲线的预测结果。假设单分散球体和多分散球体之间的非加和参数Delta>0为固定值,并使用舒尔茨分布来表示尺寸多分散性。发现多分散性会增加不混溶区域的范围。预测的浊点曲线和阴影曲线极大地依赖于舒尔茨分布的上限截止直径sigmac,并且对于较大的sigmac值可能会出现三相平衡。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验