Nicoli Matteo, Castro Mario, Cuerno Rodolfo
Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de Matemáticas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Spain.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Aug;78(2 Pt 1):021601. doi: 10.1103/PhysRevE.78.021601. Epub 2008 Aug 11.
We study a moving-boundary model of nonconserved interface growth that implements the interplay between diffusive matter transport and aggregation kinetics at the interface. Conspicuous examples are found in thin-film production by chemical vapor deposition and electrochemical deposition. The model also incorporates noise terms that account for fluctuations in the diffusive and attachment processes. A small-slope approximation allows us to derive effective interface evolution equations (IEEs) in which parameters are related to those of the full moving-boundary problem. In particular, the form of the linear dispersion relation of the IEE changes drastically for slow or for instantaneous attachment kinetics. In the former case the IEE takes the form of the well-known (noisy) Kuramoto-Sivashinsky equation, showing a morphological instability at short times that evolves into kinetic roughening of the Kardar-Parisi-Zhang (KPZ) class. In the instantaneous kinetics limit, the IEE combines the Mullins-Sekerka linear dispersion relation with a KPZ nonlinearity, and we provide a numerical study of the ensuing dynamics. In all cases, the long preasymptotic transients can account for the experimental difficulties in observing KPZ scaling. We also compare our results with relevant data from experiments and discrete models.
我们研究了一个非守恒界面生长的移动边界模型,该模型实现了扩散物质传输与界面处聚集动力学之间的相互作用。在化学气相沉积和电化学沉积制备薄膜的过程中可以发现显著的例子。该模型还包含了考虑扩散和附着过程中波动的噪声项。一个小斜率近似使我们能够推导出有效的界面演化方程(IEEs),其中的参数与完整移动边界问题的参数相关。特别是,对于缓慢或瞬时附着动力学,IEE的线性色散关系形式会发生巨大变化。在前一种情况下,IEE采用著名的(有噪声的)Kuramoto-Sivashinsky方程形式,在短时间内表现出形态不稳定性,进而演变成Kardar-Parisi-Zhang(KPZ)类的动力学粗糙化。在瞬时动力学极限下,IEE将Mullins-Sekerka线性色散关系与KPZ非线性相结合,我们对由此产生的动力学进行了数值研究。在所有情况下,长时间的预渐近瞬态可以解释观察KPZ标度时的实验困难。我们还将我们的结果与来自实验和离散模型的相关数据进行了比较。