Suppr超能文献

无张力或无粘性的 Kardar-Parisi-Zhang 方程中的反常弹道标度

Anomalous ballistic scaling in the tensionless or inviscid Kardar-Parisi-Zhang equation.

作者信息

Rodríguez-Fernández Enrique, Santalla Silvia N, Castro Mario, Cuerno Rodolfo

机构信息

Departamento de Matemáticas and Grupo Interdisciplinar de Sistemas Complejos (GISC), Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Spain.

Departamento de Física and GISC, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Spain.

出版信息

Phys Rev E. 2022 Aug;106(2-1):024802. doi: 10.1103/PhysRevE.106.024802.

Abstract

The one-dimensional Kardar-Parisi-Zhang (KPZ) equation is becoming an overarching paradigm for the scaling of nonequilibrium, spatially extended, classical and quantum systems with strong correlations. Recent analytical solutions have uncovered a rich structure regarding its scaling exponents and fluctuation statistics. However, the zero surface tension or zero viscosity case eludes such analytical solutions and has remained ill-understood. Using numerical simulations, we elucidate a well-defined universality class for this case that differs from that of the viscous case, featuring intrinsically anomalous kinetic roughening (despite previous expectations for systems with local interactions and time-dependent noise) and ballistic dynamics. The latter may be relevant to recent quantum spin chain experiments which measure KPZ and ballistic relaxation under different conditions. We identify the ensuing set of scaling exponents in previous discrete interface growth models related with isotropic percolation, and show it to describe the fluctuations of additional continuum systems related with the noisy Korteweg-de Vries equation. Along this process, we additionally elucidate the universality class of the related inviscid stochastic Burgers equation.

摘要

一维 Kardar-Parisi-Zhang(KPZ)方程正成为具有强关联的非平衡、空间扩展的经典和量子系统标度的一个总体范式。最近的解析解揭示了关于其标度指数和涨落统计的丰富结构。然而,零表面张力或零粘度的情况却没有这样的解析解,并且仍然没有得到很好的理解。通过数值模拟,我们阐明了这种情况下一个明确的普适类,它不同于粘性情况,其特征是具有内在的反常动力学粗糙化(尽管之前对具有局部相互作用和时间相关噪声的系统有预期)和弹道动力学。后者可能与最近在不同条件下测量 KPZ 和弹道弛豫的量子自旋链实验有关。我们确定了先前与各向同性渗流相关的离散界面生长模型中随之产生的一组标度指数,并表明它描述了与含噪声的 Korteweg-de Vries 方程相关的其他连续体系统的涨落。在此过程中,我们还阐明了相关的无粘随机伯格斯方程的普适类。

相似文献

2
7
Universal interface fluctuations in the contact process.接触过程中的普遍界面涨落。
Phys Rev E. 2023 Oct;108(4-1):044801. doi: 10.1103/PhysRevE.108.044801.
9
Ballistic deposition patterns beneath a growing Kardar-Parisi-Zhang interface.生长的 Kardar-Parisi-Zhang 界面下方的弹道沉积模式。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Dec;82(6 Pt 1):061107. doi: 10.1103/PhysRevE.82.061107. Epub 2010 Dec 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验