Suppr超能文献

非平衡过程:驱动晶格气体、界面动力学以及淬火无序对密度分布和电流的影响。

Nonequilibrium processes: driven lattice gases, interface dynamics, and quenched-disorder effects on density profiles and currents.

作者信息

de Queiroz S L A, Stinchcombe R B

机构信息

Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, 21941-972 Rio de Janeiro RJ, Brazil.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Sep;78(3 Pt 1):031106. doi: 10.1103/PhysRevE.78.031106. Epub 2008 Sep 4.

Abstract

Properties of the one-dimensional totally asymmetric simple exclusion process (TASEP), and their connection with the dynamical scaling of moving interfaces described by a Kardar-Parisi-Zhang equation are investigated. With periodic boundary conditions, scaling of interface widths (the latter defined via a discrete occupation-number-to-height mapping), gives the exponents alpha=0.500(5) , z=1.52(3) , beta=0.33(1) . With open boundaries, results are as follows: (i) in the maximal-current phase, the exponents are the same as for the periodic case, and in agreement with recent Bethe ansatz results; (ii) in the low-density phase, curve collapse can be found to a rather good extent, with alpha=0.497(3) , z=1.20(5) , beta=0.41(2) , which is apparently at variance with the Bethe ansatz prediction z=0 ; (iii) on the coexistence line between low- and high-density phases, alpha=0.99(1) , z=2.10(5) , beta=0.47(2) , in relatively good agreement with the Bethe ansatz prediction z=2 . From a mean-field continuum formulation, a characteristic relaxation time, related to kinematic-wave propagation and having an effective exponent z;{'}=1 , is shown to be the limiting slow process for the low-density phase, which accounts for the above mentioned discrepancy with Bethe ansatz results. For TASEP with quenched bond disorder, interface width scaling gives alpha=1.05(5) , z=1.7(1) , beta=0.62(7) . From a direct analytic approach to steady-state properties of TASEP with quenched disorder, closed-form expressions for the piecewise shape of averaged density profiles are given, as well as rather restrictive bounds on currents. All these are substantiated in numerical simulations.

摘要

研究了一维完全非对称简单排斥过程(TASEP)的性质,以及它们与由 Kardar-Parisi-Zhang 方程描述的移动界面的动态标度之间的联系。在周期边界条件下,界面宽度的标度(后者通过离散占据数到高度的映射定义)给出指数α = 0.500(5),z = 1.52(3),β = 0.33(1)。在开放边界条件下,结果如下:(i) 在最大电流相,指数与周期情况相同,并且与最近的 Bethe 假设结果一致;(ii) 在低密度相,可以在相当程度上发现曲线塌缩,α = 0.497(3),z = 1.20(5),β = 0.41(2),这显然与 Bethe 假设预测 z = 0 不一致;(iii) 在低密度和高密度相之间的共存线上,α = 0.99(1),z = 2.10(5),β = 0.47(2),与 Bethe 假设预测 z = 2 相对较好地一致。从平均场连续体公式出发,一个与运动波传播相关且有效指数 z′ = 1 的特征弛豫时间,被证明是低密度相的极限慢过程,这解释了与 Bethe 假设结果的上述差异。对于具有淬火键无序的 TASEP,界面宽度标度给出α = 1.05(5),z = 1.7(1),β = 0.62(7)。从对具有淬火无序的 TASEP 的稳态性质的直接解析方法出发,给出了平均密度分布的分段形状的封闭形式表达式,以及对电流的相当严格的界限。所有这些在数值模拟中都得到了证实。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验