Aranson Igor S, Tsimring Lev S, Malloggi Florent, Clément Eric
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Sep;78(3 Pt 1):031303. doi: 10.1103/PhysRevE.78.031303. Epub 2008 Sep 8.
We study the rheology of sheared granular flows close to a jamming transition. We use the approach of partially fluidized theory (PFT) with a full set of equations extending the thin layer approximation derived previously for the description of the granular avalanches phenomenology. This theory provides a picture compatible with a local rheology at large shear rates [G. D. R. Midi, Eur. Phys. J. E 14, 341 (2004)] and it works in the vicinity of the jamming transition, where a description in terms of a simple local rheology comes short. We investigate two situations displaying important deviations from local rheology. The first one is based on a set of numerical simulations of sheared soft two-dimensional circular grains. The next case describes previous experimental results obtained on avalanches of sandy material flowing down an incline. Both cases display, close to jamming, significant deviations from the now standard Pouliquen's flow rule [O. Pouliquen, Phys. Fluids 11, 542 (1999); 11, 1956 (1999)]. This discrepancy is the hallmark of a strongly nonlocal rheology and in both cases, we relate the empirical results and the outcomes of PFT. The numerical simulations show a characteristic constitutive structure for the fluid part of the stress involving the confining pressure and the material stiffness that appear in the form of an additional dimensionless parameter. This constitutive relation is then used to describe the case of sandy flows. We show a quantitative agreement as far as the effective flow rules are concerned. A fundamental feature is identified in PFT as the existence of a jammed layer developing in the vicinity of the flow arrest that corroborates the experimental findings. Finally, we study the case of solitary erosive granular avalanches and relate the outcome with the PFT analysis.
我们研究接近堵塞转变的剪切颗粒流的流变学。我们采用部分流化理论(PFT)方法,使用一整套方程扩展了先前为描述颗粒雪崩现象学而推导的薄层近似。该理论提供了一种与大剪切速率下的局部流变学兼容的图景[G.D.R.米迪,《欧洲物理杂志E》14,341(2004)],并且它在堵塞转变附近起作用,在那里用简单的局部流变学进行描述是不够的。我们研究了两种显示出与局部流变学有重要偏差的情况。第一种基于一组剪切软二维圆形颗粒的数值模拟。下一个案例描述了先前关于沙质材料沿斜坡流动的雪崩实验结果。这两种情况在接近堵塞时都显示出与现在标准的普利昆流动规则[O.普利昆,《物理流体》11,542(1999);11,1956(1999)]有显著偏差。这种差异是强非局部流变学的标志,在这两种情况下,我们将经验结果与PFT的结果联系起来。数值模拟显示了应力流体部分的特征本构结构,涉及围压和材料刚度,它们以一个附加无量纲参数的形式出现。然后用这种本构关系来描述沙流情况。就有效流动规则而言,我们显示出定量的一致性。在PFT中确定了一个基本特征,即在流动停滞附近形成一个堵塞层,这证实了实验结果。最后,我们研究孤立侵蚀性颗粒雪崩的情况,并将结果与PFT分析联系起来。