Fujimori K
Department of Nuclear Medicine, Hokkaido University School of Medicine, Sapporo, Japan.
Hokkaido Igaku Zasshi. 1991 May;66(3):369-84.
For successful use of monoclonal antibodies and their conjugates for diagnosis and therapy, it is helpful to understand both macroscopic and microscopic aspects of antibody distribution. Antibody distribution in a tumor is simulated by splicing together information on global pharmacokinetics, transport across the capillary wall, diffusive penetration through the tumor interstitial space, and antigen-antibody interaction. One interesting implication of this simulation is a microscopic dosimetry for radioimmunotherapy. The information of microscopic radioconjugate distribution will enable us to calculate absorbed dose in a tumor at the microscopic scale. The first step is to simulate the spatial antibody concentration profile in a tumor as a function of time after intravenous (bolus) injection, using reasonable values for the parameters involved. The second step is to calculate, also as a function of time, the absorbed radiation dose distribution resulting from each concentration profile. Parameter values for IgG pharmacology and a radiation point source function for I-131 are used to explore the effect of affinity on the antibody distribution and consequent absorbed dose in the tumor. The geometry simulated corresponds to a spherical nodule of densely packed tumor cells. Absorbed doses are calculated for radiation from a single nodule and for a cubic lattice of such nodules. This modeling analysis demonstrates that 1) antigen-antibody binding in tumors can retard antibody percolation; 2) high antibody affinity at a given dose tends to decrease antibody percolation and result in a heterogeneous distribution; 3) heterogeneous antibody distribution results in heterogeneous absorbed dose. This is more apparent in the case of radiation from a single nodule or small tumors. PERC and PERC-RAD, the computer program packages developed for these analyses, provide a convenient and flexible way to assess the impact of macroscopic and microscopic parameters on the distribution of immunoconjugates (PERC) and the consequent absorbed radiation dose in tumors (PERC-RAD). This mathematical model and the general principles developed here can be applied as well as to other biological ligands and beta-emitters.
为成功地将单克隆抗体及其偶联物用于诊断和治疗,了解抗体分布的宏观和微观方面很有帮助。通过将关于整体药代动力学、跨毛细血管壁的转运、通过肿瘤间质空间的扩散渗透以及抗原 - 抗体相互作用的信息拼接在一起,来模拟抗体在肿瘤中的分布。这种模拟的一个有趣的意义是用于放射免疫治疗的微观剂量测定。微观放射性偶联物分布的信息将使我们能够在微观尺度上计算肿瘤中的吸收剂量。第一步是在静脉内(推注)注射后,使用所涉及参数的合理值,模拟肿瘤中作为时间函数的空间抗体浓度分布。第二步也是作为时间函数,计算由每个浓度分布产生的吸收辐射剂量分布。使用IgG药理学的参数值和I - 131的辐射点源函数来探讨亲和力对抗体分布以及肿瘤中随之产生的吸收剂量的影响。模拟的几何形状对应于紧密堆积的肿瘤细胞的球形结节。计算单个结节以及这种结节的立方晶格的辐射吸收剂量。这种建模分析表明:1)肿瘤中的抗原 - 抗体结合可阻碍抗体渗透;2)在给定剂量下高抗体亲和力往往会减少抗体渗透并导致分布不均一;3)抗体分布不均一导致吸收剂量不均一。这在单个结节或小肿瘤的辐射情况下更为明显。为这些分析开发的计算机程序包PERC和PERC - RAD提供了一种方便且灵活的方式,来评估宏观和微观参数对免疫偶联物分布(PERC)以及肿瘤中随之产生的吸收辐射剂量(PERC - RAD)的影响。这里开发的这个数学模型和一般原理也可应用于其他生物配体和β发射体。