Suppr超能文献

人类跑步中两个功率极限调节步频。

The two power limits conditioning step frequency in human running.

作者信息

Cavagna G A, Willems P A, Franzetti P, Detrembleur C

机构信息

Istituto di Fisiologia Umana, Università di Milano, Italy.

出版信息

J Physiol. 1991 Jun;437:95-108. doi: 10.1113/jphysiol.1991.sp018586.

Abstract
  1. At high running speeds, the step frequency becomes lower than the apparent natural frequency of the body's bouncing system. This is due to a relative increase of the vertical component of the muscular push and requires a greater power to maintain the motion of the centre of gravity, Wext. However, the reduction of the step frequency leads to a decrease of the power to accelerate the limbs relatively to the centre of gravity, Wint, and, possibly, of the total power Wtot = Wext + Wint. 2. In this study we measured Wext using a force platform, Wint by motion picture analysis, and calculated Wtot during human running at six given speeds (from 5 to 21 km h-1) maintained with different step frequencies dictated by a metronome. The power was calculated by dividing the positive work done at each step by the duration of the step (step-average power) and by the duration of the positive work phase (push-average power). 3. Also in running, as in walking, a change of the step frequency at a given speed has opposite effects on Wext, which decreases with increasing step frequency, and Wint, which increases with frequency; in addition, a step frequency exists at which Wtot reaches a minimum. However, the frequency for a minimum of Wtot decreases with speed in running, whereas it increases with speed in walking. This is true for both the step-average and the push-average powers. 4. The frequency minimizing the step-average power equals the freely chosen step frequency at about 13 km h-1: it is higher at lower speeds and lower at higher speeds. The frequency minimizing the push-average power approaches the freely chosen step frequency at high speeds (around 22 km h-1 for our subjects). 5. It is concluded that the increase of the vertical push does reduce the step-average power, but that a limit is set by the increase of the push-average power. Between 13 and 22 km h-1 the freely chosen step frequency is intermediate between a frequency minimizing the step-average power, eventually limited by the maximum oxygen intake (aerobic power), and a frequency minimizing the push-average power, set free by the muscle immediately during contraction (anaerobic power). The first need prevails at the lower speed, the second at the higher speed.
摘要
  1. 在高跑步速度下,步频会低于身体弹跳系统的表观固有频率。这是由于肌肉推力垂直分量的相对增加,并且需要更大的功率来维持重心的运动,即外部功率(Wext)。然而,步频的降低会导致相对于重心加速肢体的功率(内部功率,Wint)下降,并且总功率Wtot = Wext + Wint也可能下降。2. 在本研究中,我们使用力平台测量Wext,通过运动图像分析测量Wint,并计算在六种给定速度(从每小时5公里至21公里)下人类跑步时的Wtot,这些速度由节拍器控制以不同步频保持。功率通过将每一步所做的正功除以步长持续时间(步长平均功率)以及正功阶段的持续时间(推力平均功率)来计算。3. 同样在跑步中,如同在行走中一样,在给定速度下改变步频对Wext和Wint有相反的影响,Wext随着步频增加而降低,Wint随着步频增加而升高;此外,存在一个步频,此时Wtot达到最小值。然而,跑步中使Wtot最小的频率随速度降低,而在行走中则随速度升高。步长平均功率和推力平均功率都是如此。4. 使步长平均功率最小的频率在约每小时13公里时等于自由选择的步频:在较低速度时较高,在较高速度时较低。使推力平均功率最小的频率在高速时(我们的受试者约为每小时22公里)接近自由选择的步频。5. 得出的结论是,垂直推力的增加确实会降低步长平均功率,但存在一个由推力平均功率的增加所设定的限制。在每小时13公里至22公里之间,自由选择的步频介于使步长平均功率最小(最终受最大摄氧量(有氧功率)限制)的频率和使推力平均功率最小(由肌肉在收缩时即时产生(无氧功率))的频率之间。在较低速度时第一种需求占主导,在较高速度时第二种需求占主导。

相似文献

3
The determinants of the step frequency in walking in humans.人类行走步频的决定因素。
J Physiol. 1986 Apr;373:235-42. doi: 10.1113/jphysiol.1986.sp016044.
4
Mechanical power and efficiency in running children.跑步儿童的机械功率与效率
Pflugers Arch. 2001 Apr;442(1):107-16. doi: 10.1007/s004240000511.
6
The resonant step frequency in human running.人类跑步中的共振步频。
Pflugers Arch. 1997 Nov;434(6):678-84. doi: 10.1007/s004240050451.
7
The sources of external work in level walking and running.水平行走和跑步中外部功的来源。
J Physiol. 1976 Nov;262(3):639-57. doi: 10.1113/jphysiol.1976.sp011613.
10
The mechanics of running in children.儿童跑步的力学原理。
J Physiol. 1998 Jun 15;509 ( Pt 3)(Pt 3):927-40. doi: 10.1111/j.1469-7793.1998.927bm.x.

引用本文的文献

2
Branch spiral beam harvester for uni-directional ultra-low frequency excitations.用于单向超低频激励的分支螺旋梁采集器。
Heliyon. 2024 Jul 25;10(15):e34776. doi: 10.1016/j.heliyon.2024.e34776. eCollection 2024 Aug 15.
5
Kinematics and mechanical changes with step frequency at different running speeds.不同跑步速度下步频的运动学和力学变化。
Eur J Appl Physiol. 2024 Feb;124(2):607-622. doi: 10.1007/s00421-023-05303-3. Epub 2023 Sep 8.

本文引用的文献

1
Mechanics of breathing in man.人类的呼吸机制。
J Appl Physiol. 1950 May;2(11):592-607. doi: 10.1152/jappl.1950.2.11.592.
3
The mechanics of walking in children.儿童行走的力学原理。
J Physiol. 1983 Oct;343:323-39. doi: 10.1113/jphysiol.1983.sp014895.
4
The determinants of the step frequency in walking in humans.人类行走步频的决定因素。
J Physiol. 1986 Apr;373:235-42. doi: 10.1113/jphysiol.1986.sp016044.
6
The spring-mass model for running and hopping.用于跑步和跳跃的弹簧-质量模型。
J Biomech. 1989;22(11-12):1217-27. doi: 10.1016/0021-9290(89)90224-8.
7
Energetics of running: a new perspective.跑步的能量学:一个新视角。
Nature. 1990 Jul 19;346(6281):265-7. doi: 10.1038/346265a0.
8
Locomotion. Running is priced by the step.移动。跑步以步数计费。
Nature. 1990 Jul 19;346(6281):220-1. doi: 10.1038/346220a0.
9
Force platforms as ergometers.作为测力计的测力平台。
J Appl Physiol. 1975 Jul;39(1):174-9. doi: 10.1152/jappl.1975.39.1.174.
10
The sources of external work in level walking and running.水平行走和跑步中外部功的来源。
J Physiol. 1976 Nov;262(3):639-57. doi: 10.1113/jphysiol.1976.sp011613.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验