Cameron D A, Pugh E N
Institute of Neurological Sciences, University of Pennsylvania, Philadelphia 19104-6196.
Nature. 1991 Sep 12;353(6340):161-4. doi: 10.1038/353161a0.
Many invertebrates and vertebrates are sensitive to the polarization of light. The biophysical basis of invertebrate polarization sensitivity is an intrinsic dichroism, the alignment of chromophores along the photoreceptor microvilli. But such dichroism to axially propagating light is not present in vertebrate photoreceptors, whose chromophores are free to rotate in the plane of the outer-segment disc membranes, and a biophysical mechanism responsible for vertebrate polarization sensitivity has not been established. We hypothesize that the roughly elliptical cross-sectioned double-cone inner segment acts as a birefringent, polarization-sensitive dielectric waveguide, and that the double cone mosaic generates a 'polarization contrast' neural image. Here we confirm three predictions derived from these hypotheses: (1) 90 degrees periodicity for polarization sensitivity; (2) polarization sensitivity maxima corresponding to the absolute orientation of the axes of the double-cone inner-segment cross-sections; and (3) action spectrum for polarization sensitivity corresponding to the absorption spectrum of the double cones. We also present evidence for a polarization-opponent neural encoding in vertebrates.
许多无脊椎动物和脊椎动物对光的偏振敏感。无脊椎动物偏振敏感性的生物物理基础是一种内在二向色性,即发色团沿光感受器微绒毛排列。但这种对轴向传播光的二向色性在脊椎动物光感受器中并不存在,脊椎动物的发色团可在外段盘膜平面内自由旋转,且尚未确立负责脊椎动物偏振敏感性的生物物理机制。我们推测,大致呈椭圆形横截面的双锥内段充当双折射、偏振敏感的介质波导,且双锥镶嵌体产生“偏振对比度”神经图像。在此,我们证实了从这些假设得出的三个预测:(1)偏振敏感性的90度周期性;(2)与双锥内段横截面轴的绝对取向相对应的偏振敏感性最大值;(3)与双锥吸收光谱相对应的偏振敏感性作用光谱。我们还提供了脊椎动物中偏振对立神经编码的证据。