Suppr超能文献

洋葱伯克霍尔德菌G4中在芳香化合物和三氯乙烯分解代谢方面存在缺陷的突变体。

Mutants of Pseudomonas cepacia G4 defective in catabolism of aromatic compounds and trichloroethylene.

作者信息

Shields M S, Montgomery S O, Cuskey S M, Chapman P J, Pritchard P H

机构信息

Technical Resources Inc., Gulf Breeze, Florida.

出版信息

Appl Environ Microbiol. 1991 Jul;57(7):1935-41. doi: 10.1128/aem.57.7.1935-1941.1991.

Abstract

Pseudomonas cepacia G4 possesses a novel pathway of toluene catabolism that is shown to be responsible for the degradation of trichloroethylene (TCE). This pathway involves conversion of toluene via o-cresol to 3-methylcatechol. In order to determine the enzyme of toluene degradation that is responsible for TCE degradation, chemically induced mutants, blocked in the toluene ortho-monooxygenase (TOM) pathway of G4, were examined. Mutants of the phenotypic class designated TOM A- were all defective in their ability to oxidize toluene, o-cresol, m-cresol, and phenol, suggesting that a single enzyme is responsible for conversion of these compounds to their hydroxylated products (3-methylcatechol from toluene, o-cresol, and m-cresol and catechol from phenol) in the wild type. Mutants of this class did not degrade TCE. Two other mutant classes which were blocked in toluene catabolism, TOM B-, which lacked catechol-2,3-dioxygenase, and TOM C-, which lacked 2-hydroxy-6-oxoheptadienoic acid hydrolase activity, were fully capable of TCE degradation. Therefore, TCE degradation is directly associated with the monooxygenation capability responsible for toluene, cresol, and phenol hydroxylation.

摘要

洋葱伯克霍尔德菌G4拥有一条新的甲苯分解代谢途径,该途径被证明可负责三氯乙烯(TCE)的降解。此途径涉及甲苯经邻甲酚转化为3 - 甲基儿茶酚。为了确定负责TCE降解的甲苯降解酶,研究了在G4的甲苯邻单加氧酶(TOM)途径中受阻的化学诱导突变体。指定为TOM A-的表型类突变体在氧化甲苯、邻甲酚、间甲酚和苯酚的能力上均存在缺陷,这表明在野生型中,一种单一的酶负责将这些化合物转化为它们的羟基化产物(甲苯、邻甲酚和间甲酚转化为3 - 甲基儿茶酚,苯酚转化为儿茶酚)。此类突变体不能降解TCE。另外两类在甲苯分解代谢中受阻的突变体,即缺乏儿茶酚-2,3-双加氧酶的TOM B-和缺乏2-羟基-6-氧代庚二烯酸水解酶活性的TOM C-,完全能够降解TCE。因此,TCE降解与负责甲苯、甲酚和苯酚羟基化的单加氧能力直接相关。

相似文献

1
Mutants of Pseudomonas cepacia G4 defective in catabolism of aromatic compounds and trichloroethylene.
Appl Environ Microbiol. 1991 Jul;57(7):1935-41. doi: 10.1128/aem.57.7.1935-1941.1991.
4
Trichloroethylene metabolism by microorganisms that degrade aromatic compounds.
Appl Environ Microbiol. 1988 Feb;54(2):604-6. doi: 10.1128/aem.54.2.604-606.1988.
5
Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway.
Appl Environ Microbiol. 1987 May;53(5):949-54. doi: 10.1128/aem.53.5.949-954.1987.
6
Cometabolic degradation of trichloroethylene by Burkholderia cepacia G4 with poplar leaf homogenate.
Can J Microbiol. 2014 Jul;60(7):487-90. doi: 10.1139/cjm-2014-0095. Epub 2014 Jun 16.
7
Aerobic degradation of mixtures of chlorinated aliphatics by cloned toluene-o-xylene monooxygenase and toluene o-monooxygenase in resting cells.
Biotechnol Bioeng. 2000 Dec 20;70(6):693-8. doi: 10.1002/1097-0290(20001220)70:6<693::aid-bit12>3.0.co;2-w.
8
TOM, a new aromatic degradative plasmid from Burkholderia (Pseudomonas) cepacia G4.
Appl Environ Microbiol. 1995 Apr;61(4):1352-6. doi: 10.1128/aem.61.4.1352-1356.1995.
9
Regulation of phenol degradation in Pseudomonas putida.
Z Allg Mikrobiol. 1981;21(4):295-303. doi: 10.1002/jobm.3630210405.
10
A novel toluene-3-monooxygenase pathway cloned from Pseudomonas pickettii PKO1.
J Bacteriol. 1994 Jun;176(12):3749-56. doi: 10.1128/jb.176.12.3749-3756.1994.

引用本文的文献

1
Recent advances and trends of trichloroethylene biodegradation: A critical review.
Front Microbiol. 2022 Dec 22;13:1053169. doi: 10.3389/fmicb.2022.1053169. eCollection 2022.
2
Biodegradation of Volatile Organic Compounds and Their Effects on Biodegradability under Co-Existing Conditions.
Microbes Environ. 2017 Sep 27;32(3):188-200. doi: 10.1264/jsme2.ME16188. Epub 2017 Sep 12.
3
Degradation of Toluene and Trichloroethylene by Burkholderia cepacia G4 in Growth-Limited Fed-Batch Culture.
Appl Environ Microbiol. 1996 Mar;62(3):886-91. doi: 10.1128/aem.62.3.886-891.1996.
4
Effect of trichloroethylene on the competitive behavior of toluene-degrading bacteria.
Appl Environ Microbiol. 1998 Jan;64(1):208-15. doi: 10.1128/AEM.64.1.208-215.1998.
5
Development of a recA gene-based identification approach for the entire Burkholderia genus.
Appl Environ Microbiol. 2005 Jul;71(7):3917-27. doi: 10.1128/AEM.71.7.3917-3927.2005.
6
Cytotoxicity associated with trichloroethylene oxidation in Burkholderia cepacia G4.
Appl Environ Microbiol. 2001 May;67(5):2107-15. doi: 10.1128/AEM.67.5.2107-2115.2001.
8
Inactivation of toluene 2-monooxygenase in Burkholderia cepacia G4 by alkynes.
Appl Environ Microbiol. 1999 Feb;65(2):632-9. doi: 10.1128/AEM.65.2.632-639.1999.
10
Comparison of factors influencing trichloroethylene degradation by toluene-oxidizing bacteria.
Appl Environ Microbiol. 1996 Mar;62(3):825-33. doi: 10.1128/aem.62.3.825-833.1996.

本文引用的文献

1
Toxicity of Trichloroethylene to Pseudomonas putida F1 Is Mediated by Toluene Dioxygenase.
Appl Environ Microbiol. 1989 Oct;55(10):2723-5. doi: 10.1128/aem.55.10.2723-2725.1989.
2
Novel pathway of toluene catabolism in the trichloroethylene-degrading bacterium g4.
Appl Environ Microbiol. 1989 Jun;55(6):1624-9. doi: 10.1128/aem.55.6.1624-1629.1989.
3
Trichloroethylene biodegradation by a methane-oxidizing bacterium.
Appl Environ Microbiol. 1988 Apr;54(4):951-6. doi: 10.1128/aem.54.4.951-956.1988.
4
Aerobic metabolism of trichloroethylene by a bacterial isolate.
Appl Environ Microbiol. 1986 Aug;52(2):383-4. doi: 10.1128/aem.52.2.383-384.1986.
5
A press for disrupting bacteria and other micro-organisms.
Br J Exp Pathol. 1951 Apr;32(2):97-109.
6
THE BACTERIAL DEGRADATION OF CATECHOL.
Biochem J. 1965 May;95(2):466-74. doi: 10.1042/bj0950466.
9
The metabolism of cresols by species of Pseudomonas.
Biochem J. 1966 Nov;101(2):293-301. doi: 10.1042/bj1010293.
10
Isolation of spontaneous mutant strains of Pseudomonas putida.
Biochem Biophys Res Commun. 1969 Jul 7;36(1):179-84. doi: 10.1016/0006-291x(69)90666-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验