Suppr超能文献

[采用基于意大利不同地区电子健康数据的标准算法估算的哮喘患病率]

[Asthma prevalence estimated using a standard algorithm based on electronic health data in various areas of Italy].

作者信息

Tessari Roberta, Migliore Enrica, Balzi Daniela, Barchielli Alessandro, Canova Cristina, Faustini Annunziata, Galassi Claudia, Simonato Lorenzo

机构信息

Unità di epidemiologia, Dipartimento di prevenzione, Azienda ULSS 12 Veneziana.

出版信息

Epidemiol Prev. 2008 May-Jun;32(3 Suppl):56-65.

Abstract

AIM

development of an algorithm to estimate asthma prevalence by record linkage of different health databases: causes of death (CM), hospital discharges (SDO), drug prescriptions archive (PF), health tax exemptions (ET) in three Italian areas.

SETTING

Venezia AULSS 12, city of Torino, Firenze ASL 10.

PARTICIPANTS

residents aged between 0 and 34 years in the above three centres in the three year period 2002-2004, for a total of 661,275 inhabitants on 30 June 2003.

MAIN OUTCOME

annual crude and standardized prevalence (per 100 inhabitants) with 95% confidence intervals by gender and age groups (0-14, 15-34, total: 0-34 years).

METHODS

for each year of interest, we selected the following: cases with asthma as primary cause of death from CM; all persons discharged from hospitals with diagnosis (primary or secondary) of asthma (ICD9-CM code = 493*); selected prescriptions of anti-asthma drugs (ATC code = R03A, R03CC02, R03CC04, R03CK, R03DC01, R03DC03), and health-tax exemptions for asthma (code = 007.493) from ET. We defined as prevalent case a subject who was present every single year in at least one of four health databases. We reported the absolute and relative contribution of each information system by area, age, gender and year of interest. A sensitivity analysis using more restrictive criteria to identify prevalent cases (two or more prescriptions per year) was also performed.

RESULTS

the PF archive is the most important information source in identifying prevalent cases (from 92.5% of Torino to 95.4% of Firenze). The standardized prevalence of asthma in 0-34 years of age is higher in Venezia (6.37%; 2003 year) than in the other two areas, which show similar values (4.01% in Firenze, 3.77% in Torino; 2003 year). In both genders, the standardized prevalence of asthma is, for all centers, clearly higher in the 0-14 age group than in the 15-34 age group. However, Venezia has a prevalence almost twice (11.21%) that of Firenze (6.20%) and Torino (5.60%) in the 0-14years age group. The use of more restrictive criteria in case identification consistently reduces the estimated prevalence; however, in the 0-14 age group the prevalence estimated in Venice (3.3%) is still almost twice as high as those observed in the other centres (1.8% in Florence and 1.6% in Turin).

CONCLUSIONS

the algorithm used to estimate asthma prevalence in the 0-34 years age group provides values which differ considerably between the centres that contributed to the study. A validation study is required to evaluate the diagnostic quality of the identified cases, in particular among younger subjects.

摘要

目的

通过不同健康数据库的记录链接开发一种算法,以估计意大利三个地区的哮喘患病率:死亡原因(CM)、医院出院记录(SDO)、药品处方档案(PF)、健康税豁免(ET)。

背景

威尼斯AULSS 12、都灵市、佛罗伦萨ASL 10。

参与者

2002 - 2004年三年期间上述三个中心年龄在0至34岁之间的居民,2003年6月30日共有661,275名居民。

主要结果

按性别和年龄组(0 - 14岁、15 - 34岁、总计:0 - 34岁)计算的年度粗患病率和标准化患病率(每100名居民)以及95%置信区间。

方法

对于感兴趣的每一年,我们选择了以下内容:CM中以哮喘为主要死亡原因的病例;所有因哮喘诊断(主要或次要)出院的患者(ICD9 - CM代码 = 493*);选定的抗哮喘药物处方(ATC代码 = R03A、R03CC02、R03CC04、R03CK、R03DC01、R03DC03),以及ET中哮喘的健康税豁免(代码 = 007.493)。我们将在至少四个健康数据库中的一个中每年都出现的个体定义为患病病例。我们按地区、年龄、性别和感兴趣的年份报告了每个信息系统的绝对和相对贡献。还进行了敏感性分析,使用更严格的标准来识别患病病例(每年两张或更多张处方)。

结果

PF档案是识别患病病例最重要的信息来源(从都灵的92.5%到佛罗伦萨的95.4%)。威尼斯0 - 34岁年龄组的哮喘标准化患病率(2003年为6.37%)高于其他两个地区,后两者显示出相似的值(佛罗伦萨为4.01%,都灵为3.77%;2003年)。在所有中心,两个性别的哮喘标准化患病率在0 - 14岁年龄组均明显高于15 - 34岁年龄组。然而,在0 - 14岁年龄组中,威尼斯的患病率(11.21%)几乎是佛罗伦萨(6.20%)和都灵(5.60%)的两倍。在病例识别中使用更严格的标准会持续降低估计的患病率;然而,在0 - 14岁年龄组中,威尼斯估计的患病率(3.3%)仍然几乎是其他中心观察到的患病率的两倍(佛罗伦萨为1.8%,都灵为1.6%)。

结论

用于估计0 - 34岁年龄组哮喘患病率的算法在参与研究的中心之间提供了差异很大的值。需要进行验证研究以评估所识别病例的诊断质量,特别是在较年轻的受试者中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验