Roth M, Arnoux B, Ducruix A, Reiss-Husson F
Laboratoire d'Ingénierie des Protéines, LIP/LCCP, Centre d'Etudes Nucléaires de Grenoble, France.
Biochemistry. 1991 Oct 1;30(39):9403-13. doi: 10.1021/bi00103a003.
Rhodobacter sphaeroides (strain Y) reaction center (RC) crystals were grown in the presence of n-octyl beta-glucoside (beta-OG). In order to determine the structure of the detergent phase in these crystals, low-resolution neutron diffraction experiments were performed at different contrasts obtained by varying the H2O/D2O ratio in the solvent. From the contrast variation data and from the RC atomic coordinates determined by X-ray diffraction [Arnoux, B., Ducruix, A., Reiss-Husson, F., Lutz, M., Norris, J., Schiffer, M., & Chang, C. H. (1989) FEBS Lett. 258, 47-50], a model was obtained for the structure of the detergent phase in the crystal. The detergent forms a ring-shaped micelle surrounding the most hydrophobic part of the transmembrane alpha helices of the RC. Each detergent ring is connected to two next-neighbor rings by intermicellar bridges. The detergent phase is organized thus in infinite zigzag chains parallel to the b axis of the P2(1)2(1)2(1) unit cell. The main interactions between beta-OG molecules and the RC molecules are hydrophobic and are localized at the level of the transmembrane alpha helices. This interaction replaces the phospholipid-protein interaction existing in vivo in the membrane and, to some extent, also the light harvesting complex-protein interaction. Secondary hydrophilic interactions are found between a few of the charged residues of the H subunit and the hydrophilic surface of the detergent ring from a neighboring RC molecule. A comparison with a previous study on Rhodopseudomonas viridis crystals [which grow in the presence of lauryldimethylamine N-oxide (LDAO) and belong to a different space group] [Roth, M., Lewit-Bentley, A., Michel, H., Deisenhofer, J., Huber, R., & Oesterhelt, D. (1989) Nature 340, 659-661] shows a quasi identity of shape and position of the beta-OG and LDAO rings around the transmembrane alpha helices. The secondary interactions, involving in both cases the external surface of the H subunit, differ because of the different molecular packing in the two space groups. The role and structural requirements of the detergent in the crystallization process are discussed.
球形红杆菌(菌株Y)反应中心(RC)晶体在正辛基β-D-葡萄糖苷(β-OG)存在的情况下生长。为了确定这些晶体中去污剂相的结构,通过改变溶剂中的H₂O/D₂O比例获得不同的对比度,进行了低分辨率中子衍射实验。根据对比度变化数据以及通过X射线衍射确定的RC原子坐标[阿诺克斯,B.,迪克鲁,A.,赖斯-于松,F.,卢茨,M.,诺里斯,J.,希弗,M.,& 张,C. H.(1989年)《欧洲生物化学学会联合会快报》258,47 - 50],得到了晶体中去污剂相结构的模型。去污剂形成一个环形胶束,围绕着RC跨膜α螺旋的最疏水部分。每个去污剂环通过胶束间桥与两个相邻的环相连。去污剂相因此被组织成与P2(1)2(1)2(1)晶胞的b轴平行的无限锯齿链。β-OG分子与RC分子之间的主要相互作用是疏水的,并且位于跨膜α螺旋的水平。这种相互作用取代了膜中体内存在的磷脂 - 蛋白质相互作用,并且在某种程度上也取代了光捕获复合物 - 蛋白质相互作用。在H亚基的一些带电荷残基与来自相邻RC分子的去污剂环的亲水表面之间发现了二级亲水相互作用。与之前关于绿假单胞菌晶体的研究[其在月桂基二甲基氧化胺(LDAO)存在的情况下生长且属于不同的空间群][罗斯,M.,莱维特 - 本特利,A.,米歇尔,H.,戴森霍费尔,J.,胡伯,R.,& 奥斯特黑尔特,D.(1989年)《自然》340,659 - 661]进行比较,结果表明跨膜α螺旋周围β-OG和LDAO环的形状和位置几乎相同。两种情况下涉及H亚基外表面的二级相互作用因两个空间群中不同的分子堆积而有所不同。讨论了去污剂在结晶过程中的作用和结构要求。