Ule Jernej
MRC Laboratory of Molecular Biology, Cambridge, UK.
Curr Opin Neurobiol. 2008 Oct;18(5):516-23. doi: 10.1016/j.conb.2008.09.018. Epub 2008 Oct 27.
Ribonucleoprotein (RNP) complexes regulate the tissue-specific RNA processing and transport that increases the coding capacity of our genome and the ability to respond quickly and precisely to the diverse set of signals. This review focuses on three proteins that are part of RNP complexes in most cells of our body: TAR DNA-binding protein (TDP-43), the survival motor neuron protein (SMN), and fragile-X mental retardation protein (FMRP). In particular, the review asks the question why these ubiquitous proteins are primarily associated with defects in specific regions of the central nervous system? To understand this question, it is important to understand the role of genetic and cellular environment in causing the defect in the protein, as well as how the defective protein leads to misregulation of specific target RNAs. Two approaches for comprehensive analysis of defective RNA-protein interactions are presented. The first approach defines the RNA code or the collection of proteins that bind to a certain cis-acting RNA site in order to lead to a predictable outcome. The second approach defines the RNA map or the summary of positions on target RNAs where binding of a particular RNA-binding protein leads to a predictable outcome. As we learn more about the RNA codes and maps that guide the action of the dynamic RNP world in our brain, possibilities for new treatments of neurologic diseases are bound to emerge.
核糖核蛋白(RNP)复合物调节组织特异性的RNA加工和转运,这增加了我们基因组的编码能力以及对各种信号快速而精确做出反应的能力。本综述聚焦于我们身体大多数细胞中作为RNP复合物一部分的三种蛋白质:TAR DNA结合蛋白(TDP-43)、生存运动神经元蛋白(SMN)和脆性X智力低下蛋白(FMRP)。特别地,该综述提出了一个问题,即为什么这些普遍存在的蛋白质主要与中枢神经系统特定区域的缺陷相关?为理解这个问题,了解遗传和细胞环境在导致蛋白质缺陷中的作用,以及缺陷蛋白如何导致特定靶RNA的调控异常很重要。本文介绍了两种用于全面分析缺陷性RNA-蛋白质相互作用的方法。第一种方法定义RNA密码或与某个顺式作用RNA位点结合以导致可预测结果的蛋白质集合。第二种方法定义RNA图谱或靶RNA上特定RNA结合蛋白的结合导致可预测结果的位置总结。随着我们对指导大脑中动态RNP世界作用的RNA密码和图谱了解得更多,治疗神经疾病的新方法必然会出现。