Silva Jose, Barrandon Ornella, Nichols Jennifer, Kawaguchi Jitsutaro, Theunissen Thorold W, Smith Austin
Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, United Kingdom.
PLoS Biol. 2008 Oct 21;6(10):e253. doi: 10.1371/journal.pbio.0060253.
Induced pluripotent stem (iPS) cells are generated from somatic cells by genetic manipulation. Reprogramming entails multiple transgene integrations and occurs apparently stochastically in rare cells over many days. Tissue stem cells may be subject to less-stringent epigenetic restrictions than other cells and might therefore be more amenable to deprogramming. We report that brain-derived neural stem (NS) cells acquire undifferentiated morphology rapidly and at high frequency after a single round of transduction with reprogramming factors. However, critical attributes of true pluripotency--including stable expression of endogenous Oct4 and Nanog, epigenetic erasure of X chromosome silencing in female cells, and ability to colonise chimaeras--were not attained. We therefore applied molecularly defined conditions for the derivation and propagation of authentic pluripotent stem cells from embryos. We combined dual inhibition (2i) of mitogen-activated protein kinase signalling and glycogen synthase kinase-3 (GSK3) with the self-renewal cytokine leukaemia inhibitory factor (LIF). The 2i/LIF condition induced stable up-regulation of Oct4 and Nanog, reactivation of the X chromosome, transgene silencing, and competence for somatic and germline chimaerism. Using 2i /LIF, NS cell reprogramming required only 1-2 integrations of each transgene. Furthermore, transduction with Sox2 and c-Myc is dispensable, and Oct4 and Klf4 are sufficient to convert NS cells into chimaera-forming iPS cells. These findings demonstrate that somatic cell state influences requirements for reprogramming and delineate two phases in the process. The ability to capture pre-pluripotent cells that can advance to ground state pluripotency simply and with high efficiency opens a door to molecular dissection of this remarkable phenomenon.
诱导多能干细胞(iPS细胞)是通过基因操作由体细胞产生的。重编程需要多个转基因整合,并且显然是在许多天内随机发生在少数细胞中。组织干细胞可能比其他细胞受到的表观遗传限制较宽松,因此可能更易于去分化编程。我们报告称,脑源性神经干细胞(NS细胞)在用重编程因子进行一轮转导后,能迅速且高频地获得未分化形态。然而,并未获得真正多能性的关键特征,包括内源性Oct4和Nanog的稳定表达、雌性细胞中X染色体沉默的表观遗传消除以及形成嵌合体的能力。因此,我们应用了分子定义的条件来从胚胎中获得并培养真正的多能干细胞。我们将丝裂原活化蛋白激酶信号传导和糖原合酶激酶-3(GSK3)的双重抑制(2i)与自我更新细胞因子白血病抑制因子(LIF)相结合。2i/LIF条件诱导了Oct4和Nanog的稳定上调、X染色体的重新激活、转基因沉默以及形成体细胞和种系嵌合体的能力。使用2i/LIF,NS细胞重编程每个转基因仅需1-2次整合。此外,用Sox2和c-Myc进行转导是不必要的,Oct4和Klf4足以将NS细胞转化为形成嵌合体的iPS细胞。这些发现表明体细胞状态影响重编程的要求,并描绘了该过程中的两个阶段。能够简单高效地捕获可推进到基础状态多能性的前多能细胞,为对这一非凡现象进行分子剖析打开了一扇门。