Suppr超能文献

基于接收者操作特征曲线分析的玛丽布雷特和美洲狮疫病预测的统计比较。

A Statistical Comparison of the Blossom Blight Forecasts of MARYBLYT and Cougarblight with Receiver Operating Characteristic Curve Analysis.

出版信息

Phytopathology. 2007 Sep;97(9):1164-76. doi: 10.1094/PHYTO-97-9-1164.

Abstract

ABSTRACT Blossom blight forecasting is an important aspect of fire blight, caused by Erwinia amylovora, management for both apple and pear. A comparison of the forecast accuracy of two common fire blight forecasters, MARYBLYT and Cougarblight, was performed with receiver operating characteristic (ROC) curve analysis and 243 data sets. The rain threshold of Cougarblight was analyzed as a separate model termed Cougarblight and rain. Data were used as a whole and then grouped into geographic regions and cultivar susceptibilities. Frequency distributions of cases and controls, orchards or regions (depending on the data set), with and without observed disease, respectively, in all data sets overlapped. MARYBLYT, Cougarblight, and Cougarblight and rain all predicted blossom blight infection better than chance (P = 0.05). It was found that the blossom blight forecasters performed equivalently in the geographic regions of the east and west coasts of North America and moderately susceptible cultivars based on the 95% confidence intervals and pairwise contrasts of the area under the ROC curve. Significant differences (P < 0.05) between the forecasts of Cougarblight and MARYBLYT were found with pairwise contrasts in the England and very susceptible cultivar data sets. Youden's index was used to determine the optimal cutpoint of both forecasters. The greatest sensitivity and specificity for MARYBLYT coincided with the use of the highest risk threshold for predictions of infection; with Cougarblight, there was no clear single risk threshold across all data sets.

摘要

摘要 火疫病是由欧文氏菌引起的,会对苹果和梨造成严重危害,因此对其进行花疫病预测是至关重要的。本研究采用接收者操作特性(ROC)曲线分析和 243 组数据集,对两种常见的火疫病预测器(MARYBLYT 和 Cougarblight)的预测准确性进行了比较。将 Cougarblight 的降雨阈值作为一个单独的模型进行分析,称为 Cougarblight and rain。将数据作为一个整体进行分析,然后根据地理位置和品种的敏感性进行分组。在所有数据集中,有和没有观察到疾病的病例和对照(取决于数据集)的频率分布重叠。MARYBLYT、Cougarblight 和 Cougarblight and rain 均比随机预测(P = 0.05)更好地预测了花疫病的感染。结果发现,基于 ROC 曲线下面积的 95%置信区间和成对比较,花疫病预测器在北美东西海岸的地理区域以及中度易感品种中的表现相当。在英格兰和高度易感品种的数据集中,Cougarblight 和 MARYBLYT 的预测结果存在显著差异(P < 0.05)。采用 Youden 指数确定了两个预测器的最佳截断点。MARYBLYT 的最大敏感性和特异性与使用最高风险阈值进行感染预测的结果一致;而 Cougarblight 则没有明确的单一风险阈值适用于所有数据集。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验