Suppr超能文献

在空间层次结构中预测植物病害发生率的有效样本量。

An effective sample size for predicting plant disease incidence in a spatial hierarchy.

出版信息

Phytopathology. 1999 Sep;89(9):770-81. doi: 10.1094/PHYTO.1999.89.9.770.

Abstract

ABSTRACT For aggregated or heterogeneous disease incidence, one can predict the proportion of sampling units diseased at a higher scale (e.g., plants) based on the proportion of diseased individuals and heterogeneity of diseased individuals at a lower scale (e.g., leaves) using a function derived from the beta-binomial distribution. Here, a simple approximation for the beta-binomial-based function is derived. This approximation has a functional form based on the binomial distribution, but with the number of individuals per sampling unit (n) replaced by a parameter (v) that has similar interpretation as, but is not the same as, the effective sample size (n(deff) ) often used in survey sampling. The value of v is inversely related to the degree of heterogeneity of disease and generally is intermediate between n(deff) and n in magnitude. The choice of v was determined iteratively by finding a parameter value that allowed the zero term (probability that a sampling unit is disease free) of the binomial distribution to equal the zero term of the beta-binomial. The approximation function was successfully tested on observations of Eutypa dieback of grapes collected over several years and with simulated data. Unlike the beta-binomial-based function, the approximation can be rearranged to predict incidence at the lower scale from observed incidence data at the higher scale, making group sampling for heterogeneous data a more practical proposition.

摘要

摘要 对于聚合或异质疾病发病率,可以根据较低尺度(例如叶片)上个体患病的比例和异质性,使用从二项-贝塔分布中导出的函数,来预测较高尺度(例如植株)上采样单元患病的比例。此处,推导了一个基于二项-贝塔分布的简单近似函数。此近似函数的形式基于二项分布,但采样单元中的个体数量(n)由参数(v)代替,v 的解释与调查采样中常用的有效样本大小(n(deff))相似,但并不相同。v 值与疾病异质性的程度成反比,通常在 n(deff) 和 n 之间的量级。通过找到一个参数值,使二项分布的零项(采样单元无病的概率)等于二项-贝塔分布的零项,迭代确定 v 的值。该近似函数在葡萄 Eutypa 枯萎病多年的观测数据和模拟数据上进行了成功测试。与基于二项-贝塔分布的函数不同,该近似函数可以重新排列,以便根据较高尺度上的观测发病率数据来预测较低尺度上的发病率,使得针对异质数据的分组采样成为更实际的方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验