Suppr超能文献

二元响应结构测量误差模型中潜在变量模型的误设问题

On latent-variable model misspecification in structural measurement error models for binary response.

作者信息

Huang Xianzheng, Tebbs Joshua M

机构信息

Department of Statistics, University of South Carolina, Columbia, South Carolina 29208, USA.

出版信息

Biometrics. 2009 Sep;65(3):710-8. doi: 10.1111/j.1541-0420.2008.01128.x. Epub 2008 Sep 29.

Abstract

We consider structural measurement error models for a binary response. We show that likelihood-based estimators obtained from fitting structural measurement error models with pooled binary responses can be far more robust to covariate measurement error in the presence of latent-variable model misspecification than the corresponding estimators from individual responses. Furthermore, despite the loss in information, pooling can provide improved parameter estimators in terms of mean-squared error. Based on these and other findings, we create a new diagnostic method to detect latent-variable model misspecification in structural measurement error models with individual binary response. We use simulation and data from the Framingham Heart Study to illustrate our methods.

摘要

我们考虑用于二元响应的结构测量误差模型。我们表明,在存在潜在变量模型误设的情况下,通过拟合具有合并二元响应的结构测量误差模型获得的基于似然的估计量,比来自个体响应的相应估计量对协变量测量误差的鲁棒性要强得多。此外,尽管存在信息损失,但合并在均方误差方面可以提供改进的参数估计量。基于这些及其他发现,我们创建了一种新的诊断方法,以检测具有个体二元响应的结构测量误差模型中的潜在变量模型误设。我们使用模拟数据和弗雷明汉心脏研究的数据来说明我们的方法。

相似文献

1
On latent-variable model misspecification in structural measurement error models for binary response.
Biometrics. 2009 Sep;65(3):710-8. doi: 10.1111/j.1541-0420.2008.01128.x. Epub 2008 Sep 29.
2
Estimation in semiparametric transition measurement error models for longitudinal data.
Biometrics. 2009 Sep;65(3):728-36. doi: 10.1111/j.1541-0420.2008.01173.x. Epub 2009 Jan 23.
3
Latent-model robustness in joint models for a primary endpoint and a longitudinal process.
Biometrics. 2009 Sep;65(3):719-27. doi: 10.1111/j.1541-0420.2008.01171.x. Epub 2009 Jan 23.
5
Diagnosis of random-effect model misspecification in generalized linear mixed models for binary response.
Biometrics. 2009 Jun;65(2):361-8. doi: 10.1111/j.1541-0420.2008.01103.x.
7
Ratio estimation with measurement error in the auxiliary variate.
Biometrics. 2009 Jun;65(2):590-8. doi: 10.1111/j.1541-0420.2008.01110.x.
8
Fast FSR variable selection with applications to clinical trials.
Biometrics. 2009 Sep;65(3):692-700. doi: 10.1111/j.1541-0420.2008.01127.x. Epub 2008 Sep 29.
9
Double Robust Efficient Estimators of Longitudinal Treatment Effects: Comparative Performance in Simulations and a Case Study.
Int J Biostat. 2019 Feb 26;15(2):/j/ijb.2019.15.issue-2/ijb-2017-0054/ijb-2017-0054.xml. doi: 10.1515/ijb-2017-0054.

引用本文的文献

1
Bayesian Additive Regression Trees for Group Testing Data.
Stat Med. 2025 Mar 15;44(6):e70052. doi: 10.1002/sim.70052.
2
Generalized additive regression for group testing data.
Biostatistics. 2021 Oct 13;22(4):873-889. doi: 10.1093/biostatistics/kxaa003.
3
Group testing regression models with dilution submodels.
Stat Med. 2017 Dec 30;36(30):4860-4872. doi: 10.1002/sim.7455. Epub 2017 Aug 30.
4
A general framework for the regression analysis of pooled biomarker assessments.
Stat Med. 2017 Jul 10;36(15):2363-2377. doi: 10.1002/sim.7291. Epub 2017 Mar 28.
5
Estimating Disease Prevalence Using Inverse Binomial Pooled Testing.
J Agric Biol Environ Stat. 2011 Mar 1;16(1):70-87. doi: 10.1007/s13253-010-0036-4.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验