Huang Xianzheng, Tebbs Joshua M
Department of Statistics, University of South Carolina, Columbia, South Carolina 29208, USA.
Biometrics. 2009 Sep;65(3):710-8. doi: 10.1111/j.1541-0420.2008.01128.x. Epub 2008 Sep 29.
We consider structural measurement error models for a binary response. We show that likelihood-based estimators obtained from fitting structural measurement error models with pooled binary responses can be far more robust to covariate measurement error in the presence of latent-variable model misspecification than the corresponding estimators from individual responses. Furthermore, despite the loss in information, pooling can provide improved parameter estimators in terms of mean-squared error. Based on these and other findings, we create a new diagnostic method to detect latent-variable model misspecification in structural measurement error models with individual binary response. We use simulation and data from the Framingham Heart Study to illustrate our methods.
我们考虑用于二元响应的结构测量误差模型。我们表明,在存在潜在变量模型误设的情况下,通过拟合具有合并二元响应的结构测量误差模型获得的基于似然的估计量,比来自个体响应的相应估计量对协变量测量误差的鲁棒性要强得多。此外,尽管存在信息损失,但合并在均方误差方面可以提供改进的参数估计量。基于这些及其他发现,我们创建了一种新的诊断方法,以检测具有个体二元响应的结构测量误差模型中的潜在变量模型误设。我们使用模拟数据和弗雷明汉心脏研究的数据来说明我们的方法。