Warasi Md S, McMahan Christopher S, Tebbs Joshua M, Bilder Christopher R
Department of Mathematics and Statistics, Radford University, Radford, VA 24142, USA.
Department of Mathematical Sciences, Clemson University, Clemson, SC 29634, USA.
Stat Med. 2017 Dec 30;36(30):4860-4872. doi: 10.1002/sim.7455. Epub 2017 Aug 30.
Group testing, where specimens are tested initially in pools, is widely used to screen individuals for sexually transmitted diseases. However, a common problem encountered in practice is that group testing can increase the number of false negative test results. This occurs primarily when positive individual specimens within a pool are diluted by negative ones, resulting in positive pools testing negatively. If the goal is to estimate a population-level regression model relating individual disease status to observed covariates, severe bias can result if an adjustment for dilution is not made. Recognizing this as a critical issue, recent binary regression approaches in group testing have utilized continuous biomarker information to acknowledge the effect of dilution. In this paper, we have the same overall goal but take a different approach. We augment existing group testing regression models (that assume no dilution) with a parametric dilution submodel for pool-level sensitivity and estimate all parameters using maximum likelihood. An advantage of our approach is that it does not rely on external biomarker test data, which may not be available in surveillance studies. Furthermore, unlike previous approaches, our framework allows one to formally test whether dilution is present based on the observed group testing data. We use simulation to illustrate the performance of our estimation and inference methods, and we apply these methods to 2 infectious disease data sets.
分组检测是指先对样本池进行检测,这种方法被广泛用于筛查性传播疾病患者。然而,实际操作中常见的一个问题是,分组检测会增加假阴性检测结果的数量。这主要是因为样本池中的阳性个体样本会被阴性样本稀释,导致阳性样本池检测结果为阴性。如果目标是估计一个将个体疾病状态与观察到的协变量相关联的总体水平回归模型,而不进行稀释调整,则可能会导致严重偏差。认识到这是一个关键问题后,分组检测中最近的二元回归方法利用连续生物标志物信息来确认稀释的影响。在本文中,我们有相同的总体目标,但采用了不同的方法。我们用一个针对样本池水平敏感性的参数化稀释子模型来扩充现有的分组检测回归模型(该模型假设不存在稀释),并使用最大似然估计所有参数。我们方法的一个优点是它不依赖外部生物标志物检测数据,而在监测研究中可能无法获得这些数据。此外,与以前的方法不同,我们的框架允许根据观察到的分组检测数据正式检验是否存在稀释。我们通过模拟来说明我们的估计和推断方法的性能,并将这些方法应用于两个传染病数据集。