Liu Li, Xiang Liming
School of Mathematics and Statistics, Wuhan University, Hubei 430072, P.R. China.
Biometrics. 2014 Dec;70(4):910-9. doi: 10.1111/biom.12208. Epub 2014 Sep 23.
Auxiliary covariates are often encountered in biomedical research settings where the primary exposure variable is measured only for a subgroup of study subjects. This article is concerned with generalized linear mixed models in the presence of auxiliary covariate information for clustered data. We propose a novel semiparametric estimation method based on a pairwise likelihood function and develop an estimating equation-based inference procedure by treating both the error structure and random effects as nuisance parameters. This method is robust against misspecification of either error structure or random-effects distribution and allows for dependence between random effects and covariates. We show that the resulting estimators are consistent and asymptotically normal. Extensive simulation studies evaluate the finite sample performance of the proposed estimators and demonstrate their advantage over the validation set based method and the existing method. We illustrate the method with two real data examples.
在生物医学研究环境中,辅助协变量经常会遇到,在这种环境中,主要暴露变量仅针对一部分研究对象进行测量。本文关注存在聚类数据的辅助协变量信息时的广义线性混合模型。我们基于成对似然函数提出了一种新颖的半参数估计方法,并通过将误差结构和随机效应都视为干扰参数,开发了一种基于估计方程的推断程序。该方法对于误差结构或随机效应分布的错误设定具有鲁棒性,并允许随机效应和协变量之间存在相关性。我们表明所得估计量是一致的且渐近正态的。广泛的模拟研究评估了所提出估计量的有限样本性能,并证明了它们相对于基于验证集的方法和现有方法的优势。我们用两个实际数据示例说明了该方法。