Eisenhut Marion, Huege Jan, Schwarz Doreen, Bauwe Hermann, Kopka Joachim, Hagemann Martin
Universität Rostock, Institut für Biowissenschaften, Pflanzenphysiologie, 18051 Rostock, Germany.
Plant Physiol. 2008 Dec;148(4):2109-20. doi: 10.1104/pp.108.129403. Epub 2008 Oct 22.
The amount of inorganic carbon represents one of the main environmental factors determining productivity of photoautotrophic organisms. Using the model cyanobacterium Synechocystis sp. PCC 6803, we performed a first metabolome study with cyanobacterial cells shifted from high CO(2) (5% in air) into conditions of low CO(2) (LC; ambient air with 0.035% CO(2)). Using gas chromatography-mass spectrometry, 74 metabolites were reproducibly identified under different growth conditions. Shifting wild-type cells into LC conditions resulted in a global metabolic reprogramming and involved increases of, for example, 2-oxoglutarate (2OG) and phosphoenolpyruvate, and reductions of, for example, sucrose and fructose-1,6-bisphosphate. A decrease in Calvin-Benson cycle activity and increased usage of associated carbon cycling routes, including photorespiratory metabolism, was indicated by synergistic accumulation of the fumarate, malate, and 2-phosphoglycolate pools and a transient increase of 3-phosphoglycerate. The unexpected accumulation of 2OG with a concomitant decrease of glutamine pointed toward reduced nitrogen availability when cells are confronted with LC. Despite the increase in 2OG and low amino acid pools, we found a complete dephosphorylation of the PII regulatory protein at LC characteristic for nitrogen-replete conditions. Moreover, mutants with defined blocks in the photorespiratory metabolism leading to the accumulation of glycolate and glycine, respectively, exhibited features of LC-treated wild-type cells such as the changed 2OG to glutamine ratio and PII phosphorylation state already under high CO(2) conditions. Thus, metabolome profiling demonstrated that acclimation to LC involves coordinated changes of carbon and interacting nitrogen metabolism. We hypothesize that Synechocystis has a temporal lag of acclimating carbon versus nitrogen metabolism with carbon leading.
无机碳的含量是决定光合自养生物生产力的主要环境因素之一。我们使用模式蓝藻集胞藻PCC 6803,对从高二氧化碳(空气中5%)转移到低二氧化碳(LC;含0.035%二氧化碳的环境空气)条件下的蓝藻细胞进行了首次代谢组学研究。利用气相色谱-质谱联用技术,在不同生长条件下可重复鉴定出74种代谢物。将野生型细胞转移到LC条件下会导致整体代谢重编程,例如2-氧代戊二酸(2OG)和磷酸烯醇丙酮酸增加,蔗糖和果糖-1,6-二磷酸减少。富马酸、苹果酸和2-磷酸乙醇酸池的协同积累以及3-磷酸甘油酸的短暂增加表明卡尔文-本森循环活性降低,包括光呼吸代谢在内的相关碳循环途径的使用增加。2OG意外积累同时谷氨酰胺减少表明细胞在面对LC时氮可用性降低。尽管2OG增加且氨基酸池较低,但我们发现PII调节蛋白在LC条件下完全去磷酸化,这是氮充足条件的特征。此外,在光呼吸代谢中具有特定阻断导致乙醇酸和甘氨酸分别积累的突变体,在高二氧化碳条件下就已经表现出经LC处理的野生型细胞的特征,如2OG与谷氨酰胺比例的变化和PII磷酸化状态。因此,代谢组分析表明适应LC涉及碳代谢和相互作用的氮代谢的协调变化。我们假设集胞藻在适应碳代谢与氮代谢方面存在时间滞后,碳代谢起主导作用。