Suppr超能文献

短暂性脑缺血发作后卒中风险的临床及影像学预测:CIP模型

Clinical- and imaging-based prediction of stroke risk after transient ischemic attack: the CIP model.

作者信息

Ay Hakan, Arsava E Murat, Johnston S Claiborne, Vangel Mark, Schwamm Lee H, Furie Karen L, Koroshetz Walter J, Sorensen A Gregory

机构信息

AA Martinos Center for Biomedical Imaging and Stroke Service, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Room 2301, Charlestown MA 02129, USA.

出版信息

Stroke. 2009 Jan;40(1):181-6. doi: 10.1161/STROKEAHA.108.521476. Epub 2008 Oct 23.

Abstract

BACKGROUND AND PURPOSE

Predictive instruments based on clinical features for early stroke risk after transient ischemic attack suffer from limited specificity. We sought to combine imaging and clinical features to improve predictions for 7-day stroke risk after transient ischemic attack.

METHODS

We studied 601 consecutive patients with transient ischemic attack who had MRI within 24 hours of symptom onset. A logistic regression model was developed using stroke within 7 days as the response criterion and diffusion-weighted imaging findings and dichotomized ABCD(2) score (ABCD(2) >/=4) as covariates.

RESULTS

Subsequent stroke occurred in 25 patients (5.2%). Dichotomized ABCD(2) score and acute infarct on diffusion-weighted imaging were each independent predictors of stroke risk. The 7-day risk was 0.0% with no predictor, 2.0% with ABCD(2) score >/=4 alone, 4.9% with acute infarct on diffusion-weighted imaging alone, and 14.9% with both predictors (an automated calculator is available at http://cip.martinos.org). Adding imaging increased the area under the receiver operating characteristic curve from 0.66 (95% CI, 0.57 to 0.76) using the ABCD(2) score to 0.81 (95% CI, 0.74 to 0.88; P=0.003). The sensitivity of 80% on the receiver operating characteristic curve corresponded to a specificity of 73% for the CIP model and 47% for the ABCD(2) score.

CONCLUSIONS

Combining acute imaging findings with clinical transient ischemic attack features causes a dramatic boost in the accuracy of predictions with clinical features alone for early risk of stroke after transient ischemic attack. If validated in relevant clinical settings, risk stratification by the CIP model may assist in early implementation of therapeutic measures and effective use of hospital resources.

摘要

背景与目的

基于临床特征的短暂性脑缺血发作后早期卒中风险预测工具特异性有限。我们试图将影像学和临床特征相结合,以改善对短暂性脑缺血发作后7天卒中风险的预测。

方法

我们研究了601例连续的短暂性脑缺血发作患者,这些患者在症状发作后24小时内接受了MRI检查。以7天内发生卒中作为反应标准,以弥散加权成像结果和二分法ABCD(2)评分(ABCD(2)≥4)作为协变量,建立了逻辑回归模型。

结果

25例患者(5.2%)随后发生了卒中。二分法ABCD(2)评分和弥散加权成像上的急性梗死灶均为卒中风险的独立预测因素。无预测因素时7天风险为0.0%,仅ABCD(2)评分≥4时为2.0%,仅弥散加权成像上有急性梗死灶时为4.9%,两个预测因素均有时为14.9%(可在http://cip.martinos.org获得自动计算器)。添加影像学检查使受试者工作特征曲线下面积从使用ABCD(2)评分时的0.66(95%CI,0.57至0.76)增加到0.81(95%CI,0.74至0.88;P=0.003)。受试者工作特征曲线上80%的敏感性对应的CIP模型特异性为73%,ABCD(2)评分为47%。

结论

将急性影像学结果与临床短暂性脑缺血发作特征相结合,可显著提高仅用临床特征预测短暂性脑缺血发作后早期卒中风险的准确性。如果在相关临床环境中得到验证,CIP模型进行的风险分层可能有助于早期实施治疗措施并有效利用医院资源。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验