Suppr超能文献

古菌Pus10蛋白可在tRNA中产生假尿苷54和55。

Archaeal Pus10 proteins can produce both pseudouridine 54 and 55 in tRNA.

作者信息

Gurha Priyatansh, Gupta Ramesh

机构信息

Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA.

出版信息

RNA. 2008 Dec;14(12):2521-7. doi: 10.1261/rna.1276508. Epub 2008 Oct 24.

Abstract

Pus10, a recently identified pseudouridine (Psi) synthase, does not belong to any of the five commonly identified families of Psi synthases. Pyrococcus furiosus Pus10 has been shown to produce Psi55 in tRNAs. However, in vitro studies have identified another mechanism for tRNA Psi55 production in Archaea, which uses Cbf5 and other core proteins of the H/ACA ribonucleoprotein complex, in a guide RNA-independent manner. Pus10 homologs have been observed in nearly all sequenced archaeal genomes and in some higher eukaryotes, but not in yeast and bacteria. This coincides with the presence of Psi54 in the tRNAs of Archaea and higher eukaryotes and its absence in yeast and bacteria. No tRNA Psi54 synthase has been reported so far. Here, using recombinant Methanocaldococcus jannaschii and P. furiosus Pus10, we show that these proteins can function as synthase for both tRNA Psi54 and Psi55. The two modifications seem to occur independently. Salt concentration dependent variations in these activities of both proteins are observed. The Psi54 synthase activity of M. jannaschii protein is robust, while the same activity of P. furiosus protein is weak. Probable reasons for these differences are discussed. Furthermore, unlike bacterial TruB and yeast Pus4, archaeal Pus10 does not require a U54 x A58 reverse Hoogstein base pair and pyrimidine at position 56 to convert tRNA U55 to Psi55. The homology of eukaryal Pus10 with archaeal Pus10 suggests that the former may also have a tRNA Psi54 synthase activity.

摘要

Pus10是最近发现的一种假尿苷(Ψ)合酶,不属于常见的五个Ψ合酶家族中的任何一个。嗜热栖热菌的Pus10已被证明能在tRNA中产生Ψ55。然而,体外研究发现古菌中tRNA Ψ55的产生存在另一种机制,该机制以不依赖引导RNA的方式利用Cbf5和H/ACA核糖核蛋白复合体的其他核心蛋白。几乎在所有已测序的古菌基因组以及一些高等真核生物中都观察到了Pus10同源物,但在酵母和细菌中未观察到。这与古菌和高等真核生物tRNA中存在Ψ54而酵母和细菌中不存在相吻合。迄今为止,尚未报道有tRNA Ψ54合酶。在这里,我们使用重组的詹氏甲烷球菌和嗜热栖热菌的Pus10,表明这些蛋白可以作为tRNA Ψ54和Ψ55的合酶发挥作用。这两种修饰似乎是独立发生的。观察到这两种蛋白的这些活性存在盐浓度依赖性变化。詹氏甲烷球菌蛋白的Ψ54合酶活性很强,而嗜热栖热菌蛋白的相同活性较弱。讨论了这些差异的可能原因。此外,与细菌的TruB和酵母的Pus4不同,古菌的Pus10不需要U54×A58反向Hoogsteen碱基对和56位的嘧啶来将tRNA U55转化为Ψ55。真核生物Pus10与古菌Pus10的同源性表明前者可能也具有tRNA Ψ54合酶活性。

相似文献

1
Archaeal Pus10 proteins can produce both pseudouridine 54 and 55 in tRNA.
RNA. 2008 Dec;14(12):2521-7. doi: 10.1261/rna.1276508. Epub 2008 Oct 24.
3
Role of forefinger and thumb loops in production of Ψ54 and Ψ55 in tRNAs by archaeal Pus10.
RNA. 2013 Sep;19(9):1279-94. doi: 10.1261/rna.039230.113. Epub 2013 Jul 29.
4
6
tRNA binding, positioning, and modification by the pseudouridine synthase Pus10.
J Mol Biol. 2013 Oct 23;425(20):3863-74. doi: 10.1016/j.jmb.2013.05.022. Epub 2013 Jun 4.
7
Evolution of Eukaryal and Archaeal Pseudouridine Synthase Pus10.
J Mol Evol. 2018 Jan;86(1):77-89. doi: 10.1007/s00239-018-9827-y. Epub 2018 Jan 18.
8
Formation of the conserved pseudouridine at position 55 in archaeal tRNA.
Nucleic Acids Res. 2006;34(15):4293-301. doi: 10.1093/nar/gkl530. Epub 2006 Aug 18.
9
Pseudouridine formation in archaeal RNAs: The case of Haloferax volcanii.
RNA. 2011 Jul;17(7):1367-80. doi: 10.1261/rna.2712811. Epub 2011 May 31.

引用本文的文献

1
A pseudouridine synthase shapes tRNA structural dynamics through both catalysis and remodeling.
bioRxiv. 2025 May 9:2025.05.06.652307. doi: 10.1101/2025.05.06.652307.
3
Determining the effects of pseudouridine incorporation on human tRNAs.
EMBO J. 2025 Apr 29. doi: 10.1038/s44318-025-00443-y.
4
Epitranscriptomic regulation of HIF-1: bidirectional regulatory pathways.
Mol Med. 2025 Mar 18;31(1):105. doi: 10.1186/s10020-025-01149-x.
5
Mitochondrial tRNA 14693A > G Mutation, an "Enhancer" to the Phenotypic Expression of Leber's Hereditary Optic Neuropathy.
Adv Sci (Weinh). 2024 Nov;11(41):e2401856. doi: 10.1002/advs.202401856. Epub 2024 Sep 12.
6
Pseudouridine and 1-methylpseudouridine as potent nucleotide analogues for RNA therapy and vaccine development.
RSC Chem Biol. 2024 Mar 19;5(5):418-425. doi: 10.1039/d4cb00022f. eCollection 2024 May 8.
7
Landscape of RNA pseudouridylation in archaeon Sulfolobus islandicus.
Nucleic Acids Res. 2024 May 8;52(8):4644-4658. doi: 10.1093/nar/gkae096.
9
Intron-Dependent or Independent Pseudouridylation of Precursor tRNA Containing Atypical Introns in .
Int J Mol Sci. 2022 Oct 11;23(20):12058. doi: 10.3390/ijms232012058.
10
Genome-Wide Identification and Expression Analysis of Pseudouridine Synthase Family in and Maize.
Int J Mol Sci. 2022 Feb 28;23(5):2680. doi: 10.3390/ijms23052680.

本文引用的文献

1
2
Acquisition of a bacterial RumA-type tRNA(uracil-54, C5)-methyltransferase by Archaea through an ancient horizontal gene transfer.
Mol Microbiol. 2008 Jan;67(2):323-35. doi: 10.1111/j.1365-2958.2007.06047.x. Epub 2007 Dec 7.
3
4
Crystal structure of human Pus10, a novel pseudouridine synthase.
J Mol Biol. 2007 Nov 9;373(5):1243-54. doi: 10.1016/j.jmb.2007.08.053. Epub 2007 Aug 29.
6
Identification of modified residues in RNAs by reverse transcription-based methods.
Methods Enzymol. 2007;425:21-53. doi: 10.1016/S0076-6879(07)25002-5.
7
The structure and function of small nucleolar ribonucleoproteins.
Nucleic Acids Res. 2007;35(5):1452-64. doi: 10.1093/nar/gkl1172. Epub 2007 Feb 6.
8
Pseudouridine synthases.
Chem Biol. 2006 Nov;13(11):1125-35. doi: 10.1016/j.chembiol.2006.09.009.
9
Formation of the conserved pseudouridine at position 55 in archaeal tRNA.
Nucleic Acids Res. 2006;34(15):4293-301. doi: 10.1093/nar/gkl530. Epub 2006 Aug 18.
10
A previously unidentified activity of yeast and mouse RNA:pseudouridine synthases 1 (Pus1p) on tRNAs.
RNA. 2006 Aug;12(8):1583-93. doi: 10.1261/rna.100806. Epub 2006 Jun 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验