Suppr超能文献

古菌 COG1901/结构域未知 358 SPOUT-甲基转移酶成员与假尿嘧啶核苷合成酶 Pus10 一起,催化 tRNA 第 54 位上 1-甲基假尿嘧啶的形成。

The archaeal COG1901/DUF358 SPOUT-methyltransferase members, together with pseudouridine synthase Pus10, catalyze the formation of 1-methylpseudouridine at position 54 of tRNA.

机构信息

Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA.

出版信息

RNA. 2012 Mar;18(3):421-33. doi: 10.1261/rna.030841.111. Epub 2012 Jan 24.

Abstract

The methylation of pseudouridine (Ψ) at position 54 of tRNA, producing m(1)Ψ, is a hallmark of many archaeal species, but the specific methylase involved in the formation of this modification had yet to be characterized. A comparative genomics analysis had previously identified COG1901 (DUF358), part of the SPOUT superfamily, as a candidate for this missing methylase family. To test this prediction, the COG1901 encoding gene, HVO_1989, was deleted from the Haloferax volcanii genome. Analyses of modified base contents indicated that while m(1)Ψ was present in tRNA extracted from the wild-type strain, it was absent from tRNA extracted from the mutant strain. Expression of the gene encoding COG1901 from Halobacterium sp. NRC-1, VNG1980C, complemented the m(1)Ψ minus phenotype of the ΔHVO_1989 strain. This in vivo validation was extended with in vitro tests. Using the COG1901 recombinant enzyme from Methanocaldococcus jannaschii (Mj1640), purified enzyme Pus10 from M. jannaschii and full-size tRNA transcripts or TΨ-arm (17-mer) fragments as substrates, the sequential pathway of m(1)Ψ54 formation in Archaea was reconstituted. The methylation reaction is AdoMet dependent. The efficiency of the methylase reaction depended on the identity of the residue at position 55 of the TΨ-loop. The presence of Ψ55 allowed the efficient conversion of Ψ54 to m(1)Ψ54, whereas in the presence of C55, the reaction was rather inefficient and no methylation reaction occurred if a purine was present at this position. These results led to renaming the Archaeal COG1901 members as TrmY proteins.

摘要

tRNA 第 54 位上假尿嘧啶(Ψ)的甲基化,产生 m(1)Ψ,是许多古菌的特征,但参与这种修饰形成的特定甲基化酶尚未被鉴定。先前的比较基因组学分析已经鉴定出 COG1901(DUF358),SPOUT 超家族的一部分,是这个缺失的甲基化酶家族的候选者。为了验证这一预测,从 Haloferax volcanii 基因组中删除了 COG1901 编码基因 HVO_1989。修饰碱基含量的分析表明,虽然野生型菌株提取的 tRNA 中存在 m(1)Ψ,但突变株提取的 tRNA 中不存在 m(1)Ψ。来自 Halobacterium sp. NRC-1 的 COG1901 基因的表达,VNG1980C,弥补了 ΔHVO_1989 菌株的 m(1)Ψ 缺失表型。体内验证通过体外试验得到了扩展。使用来自 Methanocaldococcus jannaschii (Mj1640) 的 COG1901 重组酶、来自 M. jannaschii 的纯化酶 Pus10 以及全长 tRNA 转录物或 TΨ-臂(17 -mer)片段作为底物,重新构建了古菌中 m(1)Ψ54 形成的连续途径。甲基化反应依赖于 AdoMet。甲基化酶反应的效率取决于 TΨ-环 55 位残基的身份。在 Ψ55 的存在下,Ψ54 可以有效地转化为 m(1)Ψ54,而在 C55 的存在下,反应效率相当低,如果该位置存在嘌呤,则不会发生甲基化反应。这些结果导致重新命名古菌的 COG1901 成员为 TrmY 蛋白。

相似文献

引用本文的文献

1
: a versatile model for studying archaeal biology.:一种用于研究古生菌生物学的通用模型。
J Bacteriol. 2025 Jun 24;207(6):e0006225. doi: 10.1128/jb.00062-25. Epub 2025 May 14.
8
Functions of Bacterial tRNA Modifications: From Ubiquity to Diversity.细菌 tRNA 修饰的功能:从普遍性到多样性。
Trends Microbiol. 2021 Jan;29(1):41-53. doi: 10.1016/j.tim.2020.06.010. Epub 2020 Jul 25.
10
Naturally occurring modified ribonucleosides.天然存在的修饰核苷。
Wiley Interdiscip Rev RNA. 2020 Sep;11(5):e1595. doi: 10.1002/wrna.1595. Epub 2020 Apr 16.

本文引用的文献

1
RNA nucleotide methylation.RNA 核苷酸甲基化。
Wiley Interdiscip Rev RNA. 2011 Sep-Oct;2(5):611-31. doi: 10.1002/wrna.79. Epub 2011 Mar 23.
5
The RNA Modification Database, RNAMDB: 2011 update.RNA修饰数据库(RNAMDB):2011年更新版。
Nucleic Acids Res. 2011 Jan;39(Database issue):D195-201. doi: 10.1093/nar/gkq1028. Epub 2010 Nov 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验