Jones Paulianda J, Merrick Ellen C, Batts Timothy W, Hargus Nicholas J, Wang Yuesheng, Stables James P, Bertram Edward H, Brown Milton L, Patel Manoj K
Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, USA.
J Pharmacol Exp Ther. 2009 Jan;328(1):201-12. doi: 10.1124/jpet.108.144709. Epub 2008 Oct 24.
Epilepsy remains a devastating neurological disorder associated with recurrent, unprovoked, spontaneous epileptic seizures. Current treatments involve seizure suppression using antiepileptic drugs (AEDs); however, many patients remain refractory to current treatments or suffer serious side effects. In view of this continued need for more effective and safer AEDs, we have designed a novel compound, 3-hydroxy-3-(4-methoxyphenyl)-1-methyl-1,3-dihydro-indol-2-one (YWI92), based on a lactam structural class, and evaluated its modulation of human neuronal sodium channel isoform (hNa(v))1.2 currents and hippocampal neuron action potential firing. Furthermore, we have tested its AED activity using a chronic and acute rat seizure model. In a similar manner to lamotrigine, a clinically used AED, YWI92 exhibited tonic block of hNa(v)1.2 channels and caused a hyperpolarizing shift in the steady-state inactivation curve when using a 30-s inactivating prepulse. YWI92 also delayed the time constants of channel repriming after a 30-s inactivating prepulse and exhibited use-dependent block at 20-Hz stimulation frequency. In membrane excitability experiments, YWI92 inhibited burst firing in CA1 neurons of animals with temporal lobe epilepsy at concentrations that had little effect on CA1 neurons from control animals. These actions on neuronal activity translated into AED activity in the maximal electroshock acute seizure model (ED(50) = 22.96 mg/kg), and importantly, in a chronic temporal lobe epilepsy model, in which the mean number of seizures was reduced. Notably, YWI92 exhibited no sedative/ataxic side effects at concentrations up to 500 mg/kg. In summary, greater affinity for inactivated sodium channels, particularly after long depolarizing prepulses, may be important for both anticonvulsant activity and drug tolerability.
癫痫仍然是一种严重的神经系统疾病,与反复、无端、自发性癫痫发作相关。目前的治疗方法包括使用抗癫痫药物(AEDs)抑制癫痫发作;然而,许多患者对当前治疗仍有耐药性或遭受严重副作用。鉴于对更有效、更安全的AEDs的持续需求,我们基于内酰胺结构类别设计了一种新型化合物3-羟基-3-(4-甲氧基苯基)-1-甲基-1,3-二氢吲哚-2-酮(YWI92),并评估了其对人神经元钠通道亚型(hNa(v))1.2电流和海马神经元动作电位发放的调节作用。此外,我们使用慢性和急性大鼠癫痫模型测试了其AED活性。与临床使用的AED拉莫三嗪类似,YWI92表现出对hNa(v)1.2通道的强直阻滞,并且在使用30秒失活预脉冲时导致稳态失活曲线超极化偏移。YWI92在30秒失活预脉冲后还延迟了通道再激活的时间常数,并在20赫兹刺激频率下表现出使用依赖性阻滞。在膜兴奋性实验中,YWI92在对对照动物的CA1神经元几乎没有影响的浓度下,抑制了颞叶癫痫动物CA1神经元的爆发性放电。这些对神经元活动的作用转化为最大电休克急性癫痫模型中的AED活性(半数有效剂量[ED(50)] = 22.96毫克/千克),重要的是,在慢性颞叶癫痫模型中,癫痫发作的平均次数减少。值得注意的是,YWI92在高达500毫克/千克的浓度下未表现出镇静/共济失调副作用。总之,对失活钠通道具有更高的亲和力,特别是在长时间去极化预脉冲后,可能对抗惊厥活性和药物耐受性都很重要。