Du Jianzhong, Armes Steven P
Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield S3 7HF, United Kingdom.
Langmuir. 2008 Dec 2;24(23):13710-6. doi: 10.1021/la8025123.
A new amphiphilic biocompatible diblock copolymer, poly(epsilon-caprolactone)-block-poly(2-aminoethyl methacrylate), PCL-b-PAMA, was synthesized in three steps by (i) ring-opening polymerization of epsilon-caprolactone, (ii) end-group modification by esterification, and (iii) atom transfer radical polymerization (ATRP) of 2-aminoethyl methacrylate hydrochloride (AMA) in its hydrochloride salt form. This copolymer forms block copolymer vesicles with the hydrophobic PCL block forming the vesicle membrane. Unusually, these vesicles are easily prepared by direct dissolution in water without using organic co-solvents, pH adjustment, or even stirring. These vesicles can be stabilized by aqueous sol-gel chemistry using tetramethyl orthosilicate (TMOS) as the silica precursor. It is well-known that cationic polymers can catalyze silica formation, but in this particular case, it seems that the TMOS precursor is solubilized within the hydrophobic PCL membrane. Thus, the neutral membrane actually directs silica formation, rather than the cationic PAMA chains. The final vesicle morphology and the silica content depend on the silicification conditions. Provided that the TMOS/AMA molar ratio does not exceed 10:1, silicification is solely confined within the PCL membrane. At higher ratios, silica nanoparticles (5-12 nm) are also observed on the outer surface of the silicified vesicles. However, these nanoparticles appear to be only weakly adsorbed, since they can be easily removed by dialysis. The mean hydrodynamic diameter of the silicified vesicles varies from 175 to 205 nm with solution pH due to (de)protonation of the externally expressed PAMA chains. Calcination of the silicified vesicles at 800 degrees C leads to the formation of hollow silica particles. 1H NMR, transmission electron microscopy (TEM), dynamic light scattering (DLS), aqueous electrophoresis, and thermogravimetric analysis (TGA) were employed to characterize the vesicles, both before and after silicification.
一种新型的两亲性生物相容性二嵌段共聚物,聚(ε-己内酯)-嵌段-聚(甲基丙烯酸2-氨基乙酯),PCL-b-PAMA,通过三步合成:(i)ε-己内酯的开环聚合,(ii)通过酯化进行端基改性,以及(iii)盐酸2-氨基乙酯(AMA)盐酸盐形式的原子转移自由基聚合(ATRP)。这种共聚物形成嵌段共聚物囊泡,其疏水性PCL嵌段形成囊泡膜。不同寻常的是,这些囊泡通过直接溶解在水中即可轻松制备,无需使用有机共溶剂、调节pH值,甚至无需搅拌。这些囊泡可以使用原硅酸四甲酯(TMOS)作为二氧化硅前体,通过水溶胶-凝胶化学方法进行稳定化处理。众所周知,阳离子聚合物可以催化二氧化硅的形成,但在这种特殊情况下,似乎是TMOS前体溶解在疏水性PCL膜内。因此,中性膜实际上引导了二氧化硅的形成,而不是阳离子PAMA链。最终的囊泡形态和二氧化硅含量取决于硅化条件。只要TMOS/AMA摩尔比不超过10:1,硅化仅局限于PCL膜内。在更高的比例下,在硅化囊泡的外表面也观察到二氧化硅纳米颗粒(5-12纳米)。然而,这些纳米颗粒似乎只是弱吸附,因为它们可以通过透析轻松去除。由于外部表达的PAMA链的(去)质子化,硅化囊泡的平均流体动力学直径随溶液pH值在175至205纳米之间变化。在800℃下煅烧硅化囊泡会导致形成中空二氧化硅颗粒。采用1H NMR、透射电子显微镜(TEM)、动态光散射(DLS)、水性电泳和热重分析(TGA)对硅化前后的囊泡进行表征。