Shapiro D A, Chapman H N, Deponte D, Doak R B, Fromme P, Hembree G, Hunter M, Marchesini S, Schmidt K, Spence J, Starodub D, Weierstall U
Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
J Synchrotron Radiat. 2008 Nov;15(Pt 6):593-9. doi: 10.1107/S0909049508024151. Epub 2008 Oct 3.
Atomic-resolution structures from small proteins have recently been determined from high-quality powder diffraction patterns using a combination of stereochemical restraints and Rietveld refinement [Von Dreele (2007), J. Appl. Cryst. 40, 133-143; Margiolaki et al. (2007), J. Am. Chem. Soc. 129, 11865-11871]. While powder diffraction data have been obtained from batch samples of small crystal-suspensions, which are exposed to X-rays for long periods of time and undergo significant radiation damage, the proof-of-concept that protein powder diffraction data from nanocrystals of a membrane protein can be obtained using a continuous microjet is shown. This flow-focusing aerojet has been developed to deliver a solution of hydrated protein nanocrystals to an X-ray beam for diffraction analysis. This method requires neither the crushing of larger polycrystalline samples nor any techniques to avoid radiation damage such as cryocooling. Apparatus to record protein powder diffraction in this manner has been commissioned, and in this paper the first powder diffraction patterns from a membrane protein, photosystem I, with crystallite sizes of less than 500 nm are presented. These preliminary patterns show the lowest-order reflections, which agree quantitatively with theoretical calculations of the powder profile. The results also serve to test our aerojet injector system, with future application to femtosecond diffraction in free-electron X-ray laser schemes, and for serial crystallography using a single-file beam of aligned hydrated molecules.
最近,通过结合立体化学限制和Rietveld精修,利用高质量粉末衍射图谱确定了小蛋白质的原子分辨率结构[冯·德里勒(2007年),《应用晶体学杂志》40卷,133 - 143页;马尔乔拉基等人(2007年),《美国化学会志》129卷,11865 - 11871页]。虽然粉末衍射数据是从长时间暴露于X射线下并遭受显著辐射损伤的小晶体悬浮液的批量样品中获得的,但已证明使用连续微射流可以获得膜蛋白纳米晶体的蛋白质粉末衍射数据。这种流动聚焦气喷装置已被开发出来,用于将水合蛋白质纳米晶体溶液输送到X射线束进行衍射分析。该方法既不需要粉碎较大的多晶样品,也不需要任何避免辐射损伤的技术,如低温冷却。以这种方式记录蛋白质粉末衍射的仪器已投入使用,本文展示了来自膜蛋白光系统I的第一批微晶尺寸小于500纳米的粉末衍射图谱。这些初步图谱显示了最低阶反射,与粉末轮廓的理论计算在数量上相符。这些结果也用于测试我们的气喷注射器系统,未来可应用于自由电子X射线激光方案中的飞秒衍射,以及用于使用排列的水合分子单束进行串行晶体学研究。