Oestreich Emily A, Malik Sundeep, Goonasekera Sanjeewa A, Blaxall Burns C, Kelley Grant G, Dirksen Robert T, Smrcka Alan V
Department of Pharmacology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
J Biol Chem. 2009 Jan 16;284(3):1514-22. doi: 10.1074/jbc.M806994200. Epub 2008 Oct 27.
Recently, we identified a novel signaling pathway involving Epac, Rap, and phospholipase C (PLC)epsilon that plays a critical role in maximal beta-adrenergic receptor (betaAR) stimulation of Ca2+-induced Ca2+ release (CICR) in cardiac myocytes. Here we demonstrate that PLCepsilon phosphatidylinositol 4,5-bisphosphate hydrolytic activity and PLCepsilon-stimulated Rap1 GEF activity are both required for PLCepsilon-mediated enhancement of sarcoplasmic reticulum Ca2+ release and that PLCepsilon significantly enhances Rap activation in response to betaAR stimulation in the heart. Downstream of PLCepsilon hydrolytic activity, pharmacological inhibition of PKC significantly inhibited both betaAR- and Epac-stimulated increases in CICR in PLCepsilon+/+ myocytes but had no effect in PLCepsilon-/- myocytes. betaAR and Epac activation caused membrane translocation of PKCepsilon in PLCepsilon+/+ but not PLCepsilon-/- myocytes and small interfering RNA-mediated PKCepsilon knockdown significantly inhibited both betaAR and Epac-mediated CICR enhancement. Further downstream, the Ca2+/calmodulin-dependent protein kinase II (CamKII) inhibitor, KN93, inhibited betaAR- and Epac-mediated CICR in PLCepsilon+/+ but not PLCepsilon-/- myocytes. Epac activation increased CamKII Thr286 phosphorylation and enhanced phosphorylation at CamKII phosphorylation sites on the ryanodine receptor (RyR2) (Ser2815) and phospholamban (Thr17) in a PKC-dependent manner. Perforated patch clamp experiments revealed that basal and betaAR-stimulated peak L-type current density are similar in PLCepsilon+/+ and PLCepsilon-/- myocytes suggesting that control of sarcoplasmic reticulum Ca2+ release, rather than Ca2+ influx through L-type Ca2+ channels, is the target of regulation of a novel signal transduction pathway involving sequential activation of Epac, PLCepsilon, PKCepsilon, and CamKII downstream of betaAR activation.
最近,我们发现了一条涉及环磷腺苷效应元件结合蛋白(Epac)、Rap和磷脂酶C(PLC)ε的新型信号通路,该通路在心肌细胞中最大程度的β-肾上腺素能受体(βAR)刺激钙诱导钙释放(CICR)过程中起关键作用。在此,我们证明PLCε磷脂酰肌醇4,5-二磷酸水解活性和PLCε刺激的Rap1鸟苷酸交换因子(GEF)活性对于PLCε介导的肌浆网钙释放增强均是必需的,并且PLCε在心脏中响应βAR刺激时能显著增强Rap激活。在PLCε水解活性的下游,蛋白激酶C(PKC)的药理学抑制显著抑制了PLCε+/+心肌细胞中βAR和Epac刺激的CICR增加,但对PLCε-/-心肌细胞无影响。βAR和Epac激活导致PKCε在PLCε+/+而非PLCε-/-心肌细胞中发生膜转位,并且小干扰RNA介导的PKCε敲低显著抑制了βAR和Epac介导的CICR增强。在更下游,钙/钙调蛋白依赖性蛋白激酶II(CamKII)抑制剂KN93抑制了PLCε+/+而非PLCε-/-心肌细胞中βAR和Epac介导的CICR。Epac激活以PKC依赖的方式增加了CamKII苏氨酸286位点的磷酸化,并增强了兰尼碱受体(RyR2)(丝氨酸2815)和受磷蛋白(苏氨酸17)上CamKII磷酸化位点的磷酸化。穿孔膜片钳实验显示,PLCε+/+和PLCε-/-心肌细胞的基础和βAR刺激的峰值L型电流密度相似,这表明肌浆网钙释放的调控,而非通过L型钙通道的钙内流,是βAR激活下游涉及Epac、PLCε、PKCε和CamKII顺序激活的新型信号转导通路的调控靶点。