Suppr超能文献

使用集成线性和非线性分类器的TGS阵列识别苯、甲苯和二甲苯。

Recognition of benzene, toluene and xylene using TGS array integrated with linear and non-linear classifier.

作者信息

Szczurek Andrzej, Maciejewska Monika

机构信息

Ecologistics and Atmosphere Protection Group, Institute of Environmental Protection Engineering, Wroclaw University of Technology, Pl. Grunwaldzki 9, 50-377 Wroclaw, Poland.

出版信息

Talanta. 2004 Oct 20;64(3):609-17. doi: 10.1016/j.talanta.2004.03.036.

Abstract

Three volatile organic compounds (VOCs): benzene, toluene and xylene were measured with an array of six Taguchi gas sensors in the air with variable humidity content. The recognition of single compounds was performed, based on measurement results. The principal component analysis (PCA) pointed at humidity as the main classification factor in the measurement data set. The linear discriminant analysis (LDA) was applied to overcome this drawback and enforce classification with respect to benzene, toluene or xylene. It was shown that discriminant function analysis (DFA), which is an LDA method allowed for 100% success rate in test samples recognition of benzene. It did not allow for accurate recognition of test samples of toluene or xylene. Following, the non-linear classifier, radial basis function neural network (RBFNN) was applied. A specific configuration of input 's was found, which provided for successful recognition of each single compound: benzene, toluene or xylene in air with variable humidity content.

摘要

使用一组六个田口气体传感器,在湿度可变的空气中测量了三种挥发性有机化合物(VOC):苯、甲苯和二甲苯。基于测量结果对单一化合物进行识别。主成分分析(PCA)指出湿度是测量数据集中的主要分类因素。应用线性判别分析(LDA)来克服这一缺点,并对苯、甲苯或二甲苯进行分类。结果表明,作为一种LDA方法的判别函数分析(DFA)在苯的测试样本识别中成功率达到100%。它无法准确识别甲苯或二甲苯的测试样本。随后,应用了非线性分类器——径向基函数神经网络(RBFNN)。找到了一种特定的输入配置,该配置能够成功识别湿度可变的空气中的每种单一化合物:苯、甲苯或二甲苯。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验