Suppr超能文献

分级急性肾动脉狭窄期间肾脏氧合的局部降低:肾缺血的一个实例

Regional decreases in renal oxygenation during graded acute renal arterial stenosis: a case for renal ischemia.

作者信息

Warner Lizette, Gomez Sabas I, Bolterman Rodney, Haas John A, Bentley Michael D, Lerman Lilach O, Romero Juan C

机构信息

Department of Physiology and Biomedical Engineering , Mayo Clinic, ST 7, 200 First St. SW, Rochester, MN 55905, USA.

出版信息

Am J Physiol Regul Integr Comp Physiol. 2009 Jan;296(1):R67-71. doi: 10.1152/ajpregu.90677.2008. Epub 2008 Oct 29.

Abstract

Ischemic nephropathy describes progressive renal failure, defined by significantly reduced glomerular filtration rate, and may be due to renal artery stenosis (RAS), a narrowing of the renal artery. It is unclear whether ischemia is present during RAS since a decrease in renal blood flow (RBF), O(2) delivery, and O(2) consumption occurs. The present study tests the hypothesis that despite proportional changes in whole kidney O(2) delivery and consumption, acute progressive RAS leads to decreases in regional renal tissue O(2). Unilateral acute RAS was induced in eight pigs with an extravascular cuff. RBF was measured with an ultrasound flow probe. Cortical and medullary tissue oxygen (P(t(O(2)))) of the stenotic kidney was measured continuously with sensors during baseline, three sequentially graded decreases in RBF, and recovery. O(2) consumption decreased proportionally to O(2) delivery during the graded stenosis (19 +/- 10.8, 48.2 +/- 9.1, 58.9 +/- 4.7 vs. 15.1 +/- 5, 35.4 +/- 3.5, 57 +/- 2.3%, respectively) while arterial venous O(2) differences were unchanged. Acute RAS produced a sharp reduction in O(2) efficiency for sodium reabsorption (P < 0.01). Cortical (P(t(O(2)))) decreases are exceeded by medullary decreases during stenosis (34.8 +/- 1.3%). Decreases in tissue oxygenation, more pronounced in the medulla than the cortex, occur despite proportional reductions in O(2) delivery and consumption. This demonstrates for the first time that hypoxia is present in the early stages of RAS and suggests a role for hypoxia in the pathophysiology of this disease. Furthermore, the notion that arteriovenous shunting and increased stoichiometric energy requirements are potential contributors toward ensuing hypoxia with graded and progressive acute RAS cannot be excluded.

摘要

缺血性肾病描述的是进行性肾衰竭,其定义为肾小球滤过率显著降低,可能由肾动脉狭窄(RAS),即肾动脉变窄引起。由于肾血流量(RBF)、氧气输送和氧气消耗均出现下降,目前尚不清楚RAS期间是否存在局部缺血。本研究检验了以下假设:尽管全肾氧气输送和消耗呈比例变化,但急性进行性RAS会导致局部肾组织氧气含量下降。通过血管外袖带在八头猪身上诱导单侧急性RAS。用超声血流探头测量RBF。在基线、RBF依次进行的三次分级降低以及恢复过程中,使用传感器连续测量狭窄肾脏的皮质和髓质组织氧分压(P(t(O(2))))。在分级狭窄过程中,氧气消耗与氧气输送成比例下降(分别为19±10.8、48.2±9.1、58.9±4.7对15.1±5、35.4±3.5、57±2.3%),而动静脉氧差未变。急性RAS使钠重吸收的氧效率急剧降低(P<0.01)。狭窄期间,髓质的P(t(O(2))))下降幅度超过皮质(34.8±1.3%)。尽管氧气输送和消耗成比例降低,但组织氧合下降在髓质比皮质更明显。这首次证明RAS早期存在缺氧,并提示缺氧在该疾病病理生理学中发挥作用。此外,动静脉分流和化学计量能量需求增加是导致分级和进行性急性RAS继发缺氧的潜在因素这一观点也不能排除。

相似文献

1
Regional decreases in renal oxygenation during graded acute renal arterial stenosis: a case for renal ischemia.
Am J Physiol Regul Integr Comp Physiol. 2009 Jan;296(1):R67-71. doi: 10.1152/ajpregu.90677.2008. Epub 2008 Oct 29.
2
Blood oxygen level-dependent measurement of acute intra-renal ischemia.
Kidney Int. 2004 Mar;65(3):944-50. doi: 10.1111/j.1523-1755.2004.00469.x.
4
Evidence that renal arterial-venous oxygen shunting contributes to dynamic regulation of renal oxygenation.
Am J Physiol Renal Physiol. 2007 Jun;292(6):F1726-33. doi: 10.1152/ajprenal.00436.2006. Epub 2007 Feb 27.
5
Addition of endothelial progenitor cells to renal revascularization restores medullary tubular oxygen consumption in swine renal artery stenosis.
Am J Physiol Renal Physiol. 2012 Jun 1;302(11):F1478-85. doi: 10.1152/ajprenal.00563.2011. Epub 2012 Mar 14.
6
Patterns of cortical oxygenation may predict the response to stenting in subjects with renal artery stenosis: A radiomics-based model.
J Cardiovasc Magn Reson. 2024 Summer;26(1):100993. doi: 10.1016/j.jocmr.2024.100993. Epub 2024 Jan 11.
7
Preserved oxygenation despite reduced blood flow in poststenotic kidneys in human atherosclerotic renal artery stenosis.
Hypertension. 2010 Apr;55(4):961-6. doi: 10.1161/HYPERTENSIONAHA.109.145227. Epub 2010 Mar 1.
8
Nitric Oxide Synthase Inhibition Induces Renal Medullary Hypoxia in Conscious Rats.
J Am Heart Assoc. 2018 Aug 7;7(15):e009501. doi: 10.1161/JAHA.118.009501.
9
Anemia increases the risk of renal cortical and medullary hypoxia during cardiopulmonary bypass.
Perfusion. 2013 Nov;28(6):504-11. doi: 10.1177/0267659113490219. Epub 2013 May 29.
10
Renal tissue oxygenation during hypoxic hypoxia.
Adv Exp Med Biol. 1976;75:441-7. doi: 10.1007/978-1-4684-3273-2_52.

引用本文的文献

1
Multiparametric MRI: can we assess renal function differently?
Clin Kidney J. 2024 Nov 19;18(1):sfae365. doi: 10.1093/ckj/sfae365. eCollection 2025 Jan.
2
Anemia and Hypoxia Impact on Chronic Kidney Disease Onset and Progression: Review and Updates.
Cureus. 2023 Oct 9;15(10):e46737. doi: 10.7759/cureus.46737. eCollection 2023 Oct.
3
Kidney Intrinsic Mechanisms as Novel Targets in Renovascular Hypertension.
Hypertension. 2024 Feb;81(2):206-217. doi: 10.1161/HYPERTENSIONAHA.123.21362. Epub 2023 Oct 23.
4
Stem Cell Therapy for Microvascular Injury Associated with Ischemic Nephropathy.
Cells. 2021 Mar 31;10(4):765. doi: 10.3390/cells10040765.
6
Role of Renal Hypoxia in the Progression From Acute Kidney Injury to Chronic Kidney Disease.
Semin Nephrol. 2019 Nov;39(6):567-580. doi: 10.1016/j.semnephrol.2019.10.006.
9
VEGF therapy for the kidney: emerging strategies.
Am J Physiol Renal Physiol. 2018 Oct 1;315(4):F747-F751. doi: 10.1152/ajprenal.00617.2017. Epub 2018 Feb 14.
10
Ascorbic acid improves renal microcirculatory oxygenation in a rat model of renal I/R injury.
J Transl Int Med. 2015 Jun-Sep;3(3):116-125. doi: 10.1515/jtim-2015-0011. Epub 2015 Sep 30.

本文引用的文献

1
The use of magnetic resonance to evaluate tissue oxygenation in renal artery stenosis.
J Am Soc Nephrol. 2008 Apr;19(4):780-8. doi: 10.1681/ASN.2007040420. Epub 2008 Feb 20.
2
Angiotensin II type 2 receptors and nitric oxide sustain oxygenation in the clipped kidney of early Goldblatt hypertensive rats.
Hypertension. 2008 Feb;51(2):345-51. doi: 10.1161/HYPERTENSIONAHA.107.097832. Epub 2007 Dec 24.
3
Simultaneous measurement of pO2 and perfusion in the rabbit kidney in vivo.
Adv Exp Med Biol. 2007;599:93-9. doi: 10.1007/978-0-387-71764-7_13.
4
Evidence that renal arterial-venous oxygen shunting contributes to dynamic regulation of renal oxygenation.
Am J Physiol Renal Physiol. 2007 Jun;292(6):F1726-33. doi: 10.1152/ajprenal.00436.2006. Epub 2007 Feb 27.
5
Acute decrease in renal microvascular PO2 during acute normovolemic hemodilution.
Am J Physiol Renal Physiol. 2007 Feb;292(2):F796-803. doi: 10.1152/ajprenal.00206.2006. Epub 2006 Oct 31.
6
Renal preglomerular arterial-venous O2 shunting is a structural anti-oxidant defence mechanism of the renal cortex.
Clin Exp Pharmacol Physiol. 2006 Jul;33(7):637-41. doi: 10.1111/j.1440-1681.2006.04391.x.
7
Renal medullary tissue oxygenation is dependent on both cortical and medullary blood flow.
Am J Physiol Renal Physiol. 2006 Mar;290(3):F688-94. doi: 10.1152/ajprenal.00275.2005. Epub 2005 Oct 11.
8
Validation of quantitative BOLD MRI measurements in kidney: application to unilateral ureteral obstruction.
Kidney Int. 2005 Jun;67(6):2305-12. doi: 10.1111/j.1523-1755.2005.00334.x.
9
Regional alterations in renal haemodynamics and oxygenation: a role in contrast medium-induced nephropathy.
Nephrol Dial Transplant. 2005 Feb;20 Suppl 1:i6-11. doi: 10.1093/ndt/gfh1069.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验