Suppr超能文献

用于细胞培养的阱式和槽式微通道生物反应器的设计

Design of well and groove microchannel bioreactors for cell culture.

作者信息

Korin Natanel, Bransky Avishay, Khoury Maria, Dinnar Uri, Levenberg Shulamit

机构信息

Biomedical Engineering, Technion Israel Institute of Technology, Haifa 32000, Israel.

出版信息

Biotechnol Bioeng. 2009 Mar 1;102(4):1222-30. doi: 10.1002/bit.22153.

Abstract

Microfluidic bioreactors have been shown valuable for various cellular applications. The use of micro-wells/grooves bioreactors, in which micro-topographical features are used to protect sensitive cells from the detrimental effects of fluidic shear stress, is a promising approach to culture sensitive cells in these perfusion microsystems. However, such devices exhibit substantially different fluid dynamics and mass transport characteristics compared to conventional planar microchannel reactors. In order to properly design and optimize these systems, fluid and mass transport issues playing a key role in microscale bioreactors should be adequately addressed. The present work is a parametric study of micro-groove/micro-well microchannel bioreactors. Operation conditions and design parameters were theoretically examined via a numerical model. The complex flow pattern obtained at grooves of various depths was studied and the shear protection factor compared to planar microchannels was evaluated. 3D flow simulations were preformed in order to examine the shear protection factor in micro-wells, which were found to have similar attributes as the grooves. The oxygen mass transport problem, which is coupled to the fluid mechanics problem, was solved for various groove geometries and for several cell types, assuming a defined shear stress limitation. It is shown that by optimizing the groove depth, the groove bioreactor may be used to effectively maximize the number of cells cultured within it or to minimize the oxygen gradient existing in such devices. Moreover, for sensitive cells having a high oxygen demand (e.g., hepatocytes) or low endurance to shear (e.g., human embryonic stem cells), results show that the use of grooves is an enabling technology, since under the same physical conditions the cells cannot be cultured for long periods of time in a planar microchannel. In addition to the theoretical model findings, the culture of human foreskin fibroblasts in groove (30 microm depth) and well bioreactors (35 microm depth) was experimentally examined at various flow rates of medium perfusion and compared to cell culture in regular flat microchannels. It was shown that the wells and the grooves enable a one order of magnitude increase in the maximum perfusion rate compared to planar microchannels. Altogether, the study demonstrates that the proper design and use of microgroove/well bioreactors may be highly beneficial for cell culture assays.

摘要

微流控生物反应器已被证明在各种细胞应用中具有重要价值。使用微阱/微槽生物反应器,其中微地形特征用于保护敏感细胞免受流体剪切应力的有害影响,是在这些灌注微系统中培养敏感细胞的一种有前途的方法。然而,与传统的平面微通道反应器相比,此类装置表现出显著不同的流体动力学和传质特性。为了正确设计和优化这些系统,在微尺度生物反应器中起关键作用的流体和传质问题应得到充分解决。目前的工作是对微槽/微阱微通道生物反应器进行参数研究。通过数值模型从理论上研究了操作条件和设计参数。研究了在不同深度的微槽处获得的复杂流动模式,并评估了与平面微通道相比的剪切保护因子。进行了三维流动模拟以研究微阱中的剪切保护因子,发现其与微槽具有相似的特性。对于各种槽几何形状和几种细胞类型,在假设确定的剪切应力限制的情况下,解决了与流体力学问题耦合的氧气传质问题。结果表明,通过优化槽深度,槽式生物反应器可用于有效最大化其内部培养的细胞数量或最小化此类装置中存在的氧气梯度。此外,对于对氧气需求高(例如肝细胞)或对剪切耐力低(例如人类胚胎干细胞)的敏感细胞,结果表明使用微槽是一项使能技术,因为在相同的物理条件下,细胞无法在平面微通道中长时间培养。除了理论模型的结果外,还在不同的培养基灌注流速下,对人包皮成纤维细胞在槽(30微米深)和阱生物反应器(35微米深)中的培养进行了实验研究,并与在常规扁平微通道中的细胞培养进行了比较。结果表明,与平面微通道相比,阱和槽可使最大灌注速率提高一个数量级。总之,该研究表明,微槽/阱生物反应器的合理设计和使用对细胞培养分析可能非常有益。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验